Representable and Diagonally Representable Weakening Relation Algebras

Peter Jipsen¹ and Jas Semrl²

¹Chapman University

²UCL (University College London)

RAMICS, 3 April 2023

This work was supported by the Engineering and Physical Sciences Research Council EP/S021566/1

Introduction

Theory of RwkRA

Towards the Abstract Class of Weakening Relation Algebras

Section 1

Introduction

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 3 < 22

Proper Relation Algebras

A proper relation algebra is a structure $\mathcal{A}=(A,\perp,\top,\neg,+,\overset{\smile}{},1,;)$ where

- $\blacktriangleright A \subseteq \wp(X \times X)$
- ↓, ⊤, +, ¬ are interpreted as Boolean bottom, top, join (union), complementation (¬R = ⊤ \ R)
- 1 is interpreted as the diagonal relation over X and it is the identity for ; defined as

$$R; S = \{(x, y) \mid \exists z : (x, z) \in R, (z, y) \in S\}$$

\blacktriangleright \sim is interpreted as relational converse

$$R^{\smile} = \{(y, x) \mid (x, y) \in R\}$$

for $R, S \subseteq X imes X$ (We can also define meet $R \cdot S = \neg(\neg R + \neg S)$ and $0 = \neg 1$)

Weakening Relations

Let $\mathbf{X} = (X, \leq)$ be a poset. A relation $R \subseteq X \times X$ is a *weakening* relation if and only if

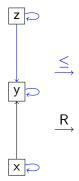
$$\leq ; R = R; \leq = \leq ; R; \leq = R$$

Operations in RA for Weakening Relations

Weakening relations are closed under

- ▶ Boolean \bot, \top
- ► Join +
- Composition ;

but not



Define a unary operation \sim for some $R \subseteq X \times X$ as

$$\sim R = \neg (R^{\smile}) = (\neg R)^{\smile}$$

or explicitly

$$\sim R = \{(x, y) \mid (y, x) \in \top \setminus R\}$$

Interestingly, weakening relations are closed under \sim

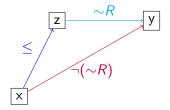
Define a unary operation \sim for some $R \subseteq X \times X$ as

$$\sim R = \neg (R^{\smile}) = (\neg R)^{\smile}$$

or explicitly

$$\sim R = \{(x, y) \mid (y, x) \in \top \setminus R\}$$

Interestingly, weakening relations are closed under \sim



イロト 不得 トイヨト イヨト 二日

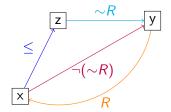
Define a unary operation \sim for some $R \subseteq X \times X$ as

$$\sim R = \neg (R^{\smile}) = (\neg R)^{\smile}$$

or explicitly

$$\sim R = \{(x, y) \mid (y, x) \in \top \setminus R\}$$

Interestingly, weakening relations are closed under \sim



イロト 不得 トイヨト イヨト 二日

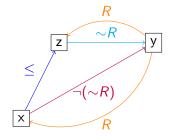
Define a unary operation \sim for some $R \subseteq X \times X$ as

$$\sim R = \neg (R^{\smile}) = (\neg R)^{\smile}$$

or explicitly

$$\sim R = \{(x, y) \mid (y, x) \in \top \setminus R\}$$

Interestingly, weakening relations are closed under \sim



Proper Weakening Relation Algebras

A proper weakening relation algebra is a structure $\mathcal{A} = (A, \bot, \top, +, \sim, 1, ;)$ where

- $\blacktriangleright A \subseteq \wp(X \times X)$
- ► (X, 1) is a poset
- 1 is a two-sided identity for ;
- ▶ \bot , \top , + are interpreted as Boolean bottom, top, join (union)
- $\blacktriangleright \sim,$; are interpreted as relational complement-converse, composition

(We can also define meet $R \cdot S = \sim (\sim R + \sim S)$ and $0 = \sim 1)$

<ロ><一><一><一><一><一><一><一</td>8/22

Representable Weakening Relation Algebras

- The class of representable weakening relation algebras RwkRA is the class of all (A, ⊥, ⊤, +, ∼, 1, ;)-structures A isomorphic to a proper A' via some isomorphism h
- ► *h* is called a *representation*
- If for A there exists a representation h' such that h'(1) is an antichain, then A is diagonally representable

Section 2

Theory of RwkRA

Result Summary

Proposition. Membership in *RwkRA* is undecidable for finite structures.

Corollary. *RwkRA* is not finitely axiomatisable.

Proposition. *RwkRA* is not closed under homomorphisms. **Corollary.** *RwkRA* is not a variety.

Theorem. Every simple diagonally representable weakening relation algebra has a discriminator term.

Corollary. The class *DRwkRA* is a discriminator variety.

Non Finite Axiomatisability

Lemma. For every relation algebra, its $(\bot, \top, +, \sim, 1,;)$ -reduct can only be diagonally representable.

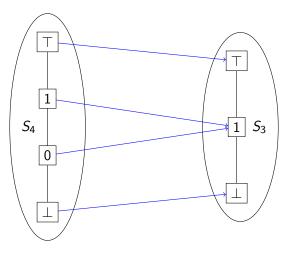
Theorem. A relation algebra is representable if and only if its $(\bot, \top, +, \sim, 1,;)$ -reduct is.

Corollary. Membership in *RwkRA* is undecidable for finite structures.

Corollary. *RwkRA* is not finitely axiomatisable.

RwkRA is not a Variety

Even-length Sugihara monoids are in *RwkRA*, but odd-length Sugihara monoids are not in *RwkRA*.



RwkRA is not closed under homomorphisms.

э

・ロット (四) マルマン (日) -

DRwkRA is a Discriminator Variety

A *discriminator term* d for a simple algebra is a term defined for three

$$d(a,b,c)=egin{cases} c & ext{if } a=b\ a & ext{otherwise} \end{cases}$$

If you have a term t(a, b) that evaluates to \perp if and only if a = b then the discriminator term for simple representable [weakening] relation algebras can be defined as

$$(\top;t(a,b);\top\cdot a) + (\neg(\top;t(a,b);\top)\cdot c)$$

 $(\top;t(a,b);\top\cdot a) + (\sim(\top;t(a,b);\top)\cdot c)$

For BA, t(a, b) is defined as $(\neg a \cdot b) + (\neg b \cdot a)$

DRwkRA is a Discriminator Variety

We define a term t(a, b) for DRwkRA as

 $1 \cdot (a; (b \cdot \sim b)) + 1 \cdot (\sim b; (a \cdot \sim b)) + 1 \cdot (b; (a \cdot \sim a)) + 1 \cdot (\sim a; (b \cdot \sim a))$

and we have

Theorem. Every simple diagonally representable weakening relation algebra has a discriminator term.

Corollary. The class *DRwkRA* is a discriminator variety.

Section 3

Towards the Abstract Class of Weakening Relation Algebras

An (Abstract) Relation Algebra is an algebra $(A, \bot, \top, \neg, +, 1, \overset{\frown}{},;)$ such that

- 1. its $(A, \bot, \top, \neg, +)$ -reduct is a Boolean Algebra
- 2. 1 is the identity for associative and additive ;
- 3. $(a^{\smile})^{\smile} = a$, $(a; b)^{\smile} = (b^{\smile}); (a^{\smile})$, and \smile is additive
- 4. the DeMorgan-Tarski equation holds: $(a^{\smile}); \neg(a;b) \leq \neg b$

Abstract Classes of RA

• for $2 \le n \le \omega$, RA_n , the class of all relation algebras	RA_2
that	UI
have an <i>n</i> -dimensional base	RA ₃
can be characterised	UI
using <i>n</i> variables in FOL	$RA = RA_4$
 'the builder' has a winning strategy for the 	UI
<i>n</i> -pebble version of a representation game	÷
\blacktriangleright $RA_4 = RA$	UI
\blacktriangleright $RA_{\omega} = RRA$	$RRA = RA_{\omega}$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 18/22

Axioms for wkRA₂

- 1. Axioms for bounded cyclic involutive unital $d\ell$ -magmas
- $2. \ s \cdot \sim s \le 0$
- 3. $s \leq t \Leftrightarrow s; \sim t \cdot 1 \leq 0$
- 4. $s \leq t; u \land s; t \leq \sim u \Rightarrow s \cdot 1 \leq 0$
- 5. $s \leq t; u \wedge u; s \leq \sim t \Rightarrow s \cdot 1 \leq 0$
- 6. $s \leq t; u \land (s \cdot 1 \cdot t; v) + (1 \cdot s \cdot \sim v; u) \leq 0 \Rightarrow s \cdot 1 \leq 0$

Axioms for wkRA₃

1. Axioms for
$$wkRA_2$$

2. $s; t \le \sim u \Rightarrow t; u \le \sim s$
3. $s \cdot t; u \le ((s;v) \cdot t); u + t; (u \cdot \sim v)$
4. $1 \cdot \sim s'; s \cdot t; \sim t' \le 0 \Rightarrow s; t \le (s \cdot s'); t + s; (t \cdot t')$
5. $1 \cdot s \cdot 0 = \bot \Rightarrow (s \cdot 1); (t;u) \le ((s \cdot 1); t); u$
6. $1 \cdot u \cdot 0 = \bot \Rightarrow (s; t); (u \cdot 1) \le s; (t; (u \cdot 1))$

Axioms for RA_3 with associativity axiomatise RA_4 . Is the same true for $wkRA_4$?

Axioms for RA_3 with associativity axiomatise RA_4 . Is the same true for $wkRA_4$? — It remains open.

Axioms for RA_3 with associativity axiomatise RA_4 . Is the same true for $wkRA_4$? — It remains open.

Is wkRA₄ finitely axiomatisable?

 RA_i , 4 < i are not finitely axiomatisable, does the same hold for $wkRA_i$?

Some other things in the paper

- 1. Presenting weakening relation algebras as relevance frames
- 2. Frame axiomnatisations of the classes wkRA2, wkRA3
- 3. Weakening relation algebra by games (for algebras and frames)
- 4. Explicit representations of all associative members of *wkRA*₃ up to size 6

Acknowledgment

The authors gratefully acknowledge a very useful conversation with Roger Maddux regarding relevance frames, relevance logic and its connections with relation algebras.