Dependences between Domain Constructions in Heterogeneous Relation Algebras

Walter Guttmann University of Canterbury

1. Heterogeneous Relation Algebras
2. Domain Constructions
3. Dependences
4. Independences

Heterogeneous Relation Algebras

heterogeneous relation

- $R: A \leftrightarrow B$ for $A=\{1,2\}$ and $B=\{a, b, c\}$
- $R=\{(1, b),(1, c),(2, a),(2, c)\} \subseteq A \times B$
$\left.\begin{array}{c}a \\ 1 \\ 2\end{array} \begin{array}{ccc}a & b & c \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$
locally small category $\left(\mathrm{Obj}, \operatorname{Mor}(A, B), ;, \mathrm{I}_{A}\right)$ with
- complete atomic Boolean algebra $\left(\operatorname{Mor}(A, B), \sqcup_{A, B}, \sqcap_{A, B},{ }^{-}{ }_{A, B}, \mathrm{O}_{A, B}, \mathrm{~L}_{A, B}, \sqsubseteq_{A, B}\right)$
- transposition ${ }_{A, B}^{\top}: \operatorname{Mor}(A, B) \rightarrow \operatorname{Mor}(B, A)$
- Schröder equivalences $Q R \sqsubseteq S \Leftrightarrow Q^{\top} \bar{S} \sqsubseteq \bar{R} \Leftrightarrow \bar{S} R^{\top} \sqsubseteq \bar{Q}$
- Tarski rule $R \neq \mathrm{O} \Leftrightarrow \mathrm{L} R \mathrm{~L}=\mathrm{L}$

REL: all binary relations between non-empty sets

Mappings

R is

- injective if $R R^{\top} \sqsubseteq I$
- total if $I \sqsubseteq R R^{\top}$
- univalent if R^{\top} is injective
- a mapping if R is total and univalent

REL: R injective if $\forall x, y, z:(x, z) \in R \wedge(y, z) \in R \Rightarrow x=y$ R total if $\forall x: \exists y:(x, y) \in R$

Domain Constructions

- power sets
- products
- sums
- quotients
- subsets

Power Sets

symmetric quotient

- $Q \div R=(Q \backslash R) \sqcap(R \backslash Q)^{\top}$
- right residual $Q \backslash R=\overline{Q^{\top} \bar{R}}$
power of object A
- object 2^{A}
- membership relation $\varepsilon: A \leftrightarrow 2^{A}$
- $\varepsilon \div \varepsilon \sqsubseteq I$
- $R \div \varepsilon$ total for each R

REL: powerset, $(x, Y) \in \varepsilon \Leftrightarrow x \in Y$

Products

product of objects A and B

- object $A \times B$
- projections $p_{A}: A \times B \leftrightarrow A$ and $p_{B}: A \times B \leftrightarrow B$
- p_{A} and p_{B} mappings
- $p_{A}{ }^{\top} p_{B}=\mathrm{L}$
- $p_{A} p_{A}{ }^{\top} \sqcap p_{B} p_{B}{ }^{\top} \sqsubseteq I$

REL: Cartesian product, $((x, y), z) \in p_{A} \Leftrightarrow x=z$

Sums

sum of objects A and B

- object $A+B$
- injections $i_{A}: A \leftrightarrow A+B$ and $i_{B}: B \leftrightarrow A+B$
- i_{A} and i_{B} injective mappings
- $i_{A} i_{B}{ }^{\top}=0$
- $I \sqsubseteq i_{A}{ }^{\top} i_{A} \sqcup i_{B}{ }^{\top} i_{B}$

REL: disjoint union, $(x,(y, Z)) \in i_{A} \Leftrightarrow x=y \wedge Z=A$

Quotients

equivalence E

- reflexive $I \sqsubseteq E$
- symmetric $E^{\top}=E$
- transitive $E E \sqsubseteq E$
quotient of object A by equivalence E
- object A / E
- projection $p: A \leftrightarrow A / E$
- $p p^{\top}=E$
- $p^{\top} p=1$

REL: equivalence classes, $(x, Y) \in p \Leftrightarrow Y=\{y \mid(x, y) \in E\}$

Subsets

partial identity S

- $S \sqsubseteq I$
subset of object A corresponding to partial identity $S \neq 0$
- object S
- injection $i: S \leftrightarrow A$
- $i^{\top} i=S$
- $i i^{\top}=1$

REL: subset, $(x, y) \in i \Leftrightarrow x=y \wedge(x, x) \in S$

Research

- axioms characterise domains uniquely up to isomorphism
- study (in)dependence of axioms
results
- Assume all power sets and subsets exist and objects are comparable. Then all sums exist.
- Assume all sums exist and atoms are rectangular. Then all products exist.
- Assume all atoms are rectangular. Then all subsets exist if and only if all quotients exist.
- Assume all atoms are rectangular. Then there are no further dependences.

Dependences between Domain Constructions in Heterogeneous Relation Algebras

Walter Guttmann University of Canterbury

1. Heterogeneous Relation Algebras
2. Domain Constructions
3. Dependences
4. Independences

Sums from Power Sets and Subsets

Assume all subsets and power sets exist.
Then $A+A$ exists for each object A.

- for $A=\{1,2\}$ construct $\{\{\{1\}\},\{\{2\}\},\{\emptyset,\{1\}\},\{\emptyset,\{2\}\}\}$
- injections $i_{A}, i_{B}: A \leftrightarrow 2^{2^{A}}$ with $i_{A}=(I \div \varepsilon)(I \div \varepsilon)$ and $i_{B}=(\varepsilon \backslash I) \div \varepsilon$
- take subset corresponding to range of injections

Assume all subsets and power sets exist and objects are comparable. Then $A+B$ exists for each object A, B.

- B contained in A if there is an injective mapping $i: B \leftrightarrow A$
- A, B comparable if B contained in A or A contained in B
- $i_{B}=i((\varepsilon \backslash I) \div \varepsilon): B \leftrightarrow 2^{2^{A}}$ injects B into A, then into $A+A$

Products from Power Sets and Subsets

Assume all atoms are rectangular.
Then all objects are comparable.

- Q atom if $Q \neq 0$ and, for each $R \sqsubseteq Q$, either $R=Q$ or $R=0$
- R is rectangular if $R \mathrm{~L} R \sqsubseteq R$

Assume all subsets and power sets exist and atoms are rectangular. Then $A \times B$ exists for each object A, B.

- for $A=\{1,2\}$ and $B=\{a, b, c\}$ construct $\{\{1, a\},\{1, b\},\{1, c\},\{2, a\},\{2, b\},\{2, c\}\}$
- construct $A+B$ by previous theorem
- projections $p_{A}=i_{A} \varepsilon \div 1: 2^{A+B} \leftrightarrow A$ and $p_{B}=i_{B} \varepsilon \div 1: 2^{A+B} \leftrightarrow B$

Products from Sums

Assume all sums exist and atoms are rectangular.
Then $A \times B$ exists for each object A, B.
finitely many atomic partial identities $\operatorname{at}_{1}(B)=\left\{b_{1}, \ldots, b_{n}\right\}$

- $A \times B=A_{n}=A+\cdots+A$ (n summands)
- $A_{1}=A$ and $A_{k}=A_{k-1}+A$ with $i_{k}: A_{k-1} \leftrightarrow A_{k}$ and $j_{k}: A \leftrightarrow A_{k}$
- compose projections from injections
$\mathrm{at}_{1}(B)$ infinite
- $A \times B=A$ if $\left|\operatorname{at}_{1}(A)\right| \geq\left|a t_{1}(B)\right|$, otherwise $A \times B=B$
- bijection between infinite sets of atomic partial identies by Cantor-Schröder-Bernstein

Subsets from Quotients and Vice Versa

Assume all atoms are rectangular.
Then all quotients exist if and only if all subsets exist.
subsets from quotients

- partial identity $S: A \leftrightarrow A$ with atom $a \sqsubseteq S$
- equivalence $E=S \sqcup a \mathrm{~L} \neg S \sqcup \neg S L a \sqcup \neg S L \neg S$ with $\neg S=\overline{S L} \sqcap \mathrm{I}$
- A / E is subset corresponding to S
quotients from subsets
- equivalence $E: A \leftrightarrow A$
- equivalence \sim on $\operatorname{at}_{1}(A)$ by $a \sim b \Leftrightarrow a L b \sqsubseteq E$
- partial identity $S=\bigsqcup_{i \in I} a_{i}$ for representatives a_{i} of $\operatorname{at}_{1}(A) / \sim$
- subset corresponding to S is A / E

Independences

power	product	sum	subset	objects
no	no	no	no	$\mathbf{2}$
no	no	no	yes	$\mathbf{1}, \mathbf{2}$
no	no	yes	no	no model
no	no	yes	yes	no model
no	yes	no	no	$\mathbf{1}, \mathbb{N}$
no	yes	no	yes	$\mathbf{1}$
no	yes	yes	no	N
no	yes	yes	yes	$\mathbf{1 , 2 , 3 , \ldots , \mathbb { N }}$
yes	no	no	no	$\mathbf{2}^{\mathbf{i}}, \mathbf{3}^{\mathbf{i}}$ for $i \in \mathbb{N}$
yes	no	no	yes	no model
yes	no	yes	no	no model
yes	no	yes	yes	no model
yes	yes	no	no	$\mathbf{2}^{\mathbf{i}}$ for $i \in \mathbb{N}$
yes	yes	no	yes	no model
yes	yes	yes	no	$\mathbf{2 , 3 , 4 , \ldots}$
yes	yes	yes	yes	$\mathbf{1}, \mathbf{2 , 3}, \ldots$

Conclusion

- weaken assumptions of comparability and rectangular atoms?
- weaker relational products
- allegories, Dedekind categories

