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Heterogeneous Relation Algebras

heterogeneous relation

� R : A ↔ B for A = {1, 2} and B = {a, b, c}
� R = {(1, b), (1, c), (2, a), (2, c)} ⊆ A× B

locally small category (Obj, Mor(A,B), ;, IA) with

� complete atomic Boolean algebra
(Mor(A,B), ⊔A,B , ⊓A,B , A,B , OA,B , LA,B , ⊑A,B)

� transposition T
A,B : Mor(A,B) → Mor(B,A)

� Schröder equivalences QR ⊑ S ⇔ QTS ⊑ R ⇔ SRT ⊑ Q

� Tarski rule R ̸= O ⇔ LRL = L

REL: all binary relations between non-empty sets
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Mappings

R is

� injective if RRT ⊑ I

� total if I ⊑ RRT

� univalent if RT is injective

� a mapping if R is total and univalent

REL: R injective if ∀x , y , z : (x , z) ∈ R ∧ (y , z) ∈ R ⇒ x = y
R total if ∀x : ∃y : (x , y) ∈ R
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Domain Constructions

� power sets

� products

� sums

� quotients

� subsets
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Power Sets

symmetric quotient

� Q÷R = (Q\R) ⊓ (R\Q)T

� right residual Q\R = QTR

power of object A

� object 2A

� membership relation ε : A ↔ 2A

� ε÷ε ⊑ I

� R÷ε total for each R

REL: powerset, (x ,Y ) ∈ ε ⇔ x ∈ Y
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Products

product of objects A and B

� object A× B

� projections pA : A× B ↔ A and pB : A× B ↔ B

� pA and pB mappings

� pA
TpB = L

� pApA
T ⊓ pBpB

T ⊑ I

REL: Cartesian product, ((x , y), z) ∈ pA ⇔ x = z
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Sums

sum of objects A and B

� object A+ B

� injections iA : A ↔ A+ B and iB : B ↔ A+ B

� iA and iB injective mappings

� iAiB
T = O

� I ⊑ iA
TiA ⊔ iB

TiB

REL: disjoint union, (x , (y ,Z )) ∈ iA ⇔ x = y ∧ Z = A
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Quotients

equivalence E

� reflexive I ⊑ E

� symmetric ET = E

� transitive EE ⊑ E

quotient of object A by equivalence E

� object A/E

� projection p : A ↔ A/E

� ppT = E

� pTp = I

REL: equivalence classes, (x ,Y ) ∈ p ⇔ Y = {y | (x , y) ∈ E}
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Subsets

partial identity S

� S ⊑ I

subset of object A corresponding to partial identity S ̸= O

� object S

� injection i : S ↔ A

� iTi = S

� iiT = I

REL: subset, (x , y) ∈ i ⇔ x = y ∧ (x , x) ∈ S
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Research

� axioms characterise domains uniquely up to isomorphism

� study (in)dependence of axioms

results

� Assume all power sets and subsets exist and objects are comparable.
Then all sums exist.

� Assume all sums exist and atoms are rectangular.
Then all products exist.

� Assume all atoms are rectangular.
Then all subsets exist if and only if all quotients exist.

� Assume all atoms are rectangular.
Then there are no further dependences.
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Sums from Power Sets and Subsets

Assume all subsets and power sets exist.
Then A+ A exists for each object A.

� for A = {1, 2} construct {{{1}}, {{2}}, {∅, {1}}, {∅, {2}}}
� injections iA, iB : A ↔ 22

A
with iA = (I÷ε)(I÷ε) and iB = (ε\I)÷ε

� take subset corresponding to range of injections

Assume all subsets and power sets exist and objects are comparable.
Then A+ B exists for each object A,B.

� B contained in A if there is an injective mapping i : B ↔ A

� A,B comparable if B contained in A or A contained in B

� iB = i((ε\I)÷ε) : B ↔ 22
A
injects B into A, then into A+ A
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Products from Power Sets and Subsets

Assume all atoms are rectangular.
Then all objects are comparable.

� Q atom if Q ̸= O and, for each R ⊑ Q, either R = Q or R = O

� R is rectangular if RLR ⊑ R

Assume all subsets and power sets exist and atoms are rectangular.
Then A× B exists for each object A,B.

� for A = {1, 2} and B = {a, b, c} construct
{{1, a}, {1, b}, {1, c}, {2, a}, {2, b}, {2, c}}

� construct A+ B by previous theorem

� projections pA = iAε÷I : 2A+B ↔ A and pB = iBε÷I : 2A+B ↔ B
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Products from Sums

Assume all sums exist and atoms are rectangular.
Then A× B exists for each object A,B.

finitely many atomic partial identities at1(B) = {b1, . . . , bn}
� A× B = An = A+ · · ·+ A (n summands)

� A1 = A and Ak = Ak−1 +A with ik : Ak−1 ↔ Ak and jk : A ↔ Ak

� compose projections from injections

at1(B) infinite

� A× B = A if |at1(A)| ≥ |at1(B)|, otherwise A× B = B

� bijection between infinite sets of atomic partial identies by
Cantor-Schröder-Bernstein
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Subsets from Quotients and Vice Versa

Assume all atoms are rectangular.
Then all quotients exist if and only if all subsets exist.

subsets from quotients

� partial identity S : A ↔ A with atom a ⊑ S

� equivalence E = S ⊔ aL¬S ⊔ ¬SLa ⊔ ¬SL¬S with ¬S = SL ⊓ I

� A/E is subset corresponding to S

quotients from subsets

� equivalence E : A ↔ A

� equivalence ∼ on at1(A) by a ∼ b ⇔ aLb ⊑ E

� partial identity S =
⊔

i∈I ai for representatives ai of at1(A)/∼
� subset corresponding to S is A/E
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Independences

power product sum subset objects
no no no no 2
no no no yes 1, 2
no no yes no no model
no no yes yes no model
no yes no no 1,N
no yes no yes 1
no yes yes no N

no yes yes yes 1, 2, 3, . . . ,N
yes no no no 2i, 3i for i ∈ N
yes no no yes no model
yes no yes no no model
yes no yes yes no model
yes yes no no 2i for i ∈ N
yes yes no yes no model
yes yes yes no 2, 3, 4, . . .
yes yes yes yes 1, 2, 3, . . .

subalgebras of REL: k is k-element set, all morphisms
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Conclusion

� weaken assumptions of comparability and rectangular atoms?

� weaker relational products

� allegories, Dedekind categories
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