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Introduction

The use of ROBDDs often leads to an amazing computational power of
RELVIEW, in particular, if the solution of a hard problem is based on the
computation of a subset R of a powerset 2X.

In certain situations X is a direct product Y x Z, which means that R is a
subset of [Y <> Z], the set of relations between Y and Z.

Examples:
@ Solutions of a timetabling problem (B. Kehden, R. B.).
e Computation of the set of up-closed multirelations (W. Guttmann).

@ Computational proof of a variant of the Kuratowski closure-comple-
ment-theorem (R. B.).

e Experiments with sufficient criteria for the existence of kernels (R. B.).
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We present a method for the relational computation of sets R of relations
that generalizes the method presented at RAMICS 2021.

As the method presented at RAMICS 2021, the set R is computed as a
vector t: [X <> Y] <> 1 that represents R as a subset of [X <> Y].

In contrast with the old method, however, the new method

@ does not specify R to belong to R by an inclusion v C to between
columnwise extendible vector expressions v, € VE(r) over a vector
representation r of R

@ but by an inclusion R C & between general relation-algebraic ex-
pressions R, S € RE(R) as usual.

Compared with the method presented at RAMICS 2021 the proposed new
method is much simpler and straightforward.
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The Relational Constructions we Need
@ Basic operations and basic constants of relation algebra.
RUS RNS RS R, R" O L |

@ Projection relations 7 : XxY <+ X and p: XXY < Y of XX Y as
further basic constants. Pointwise description:

Tux < U1 =X Puy = =Yy

o Left pairing [R,S] := 7 RN p; S, right pairing [R,S] := [RT, ST]T
and parallel composition R|| S := [m; R, p; S] (derived operations).
Pointwise descriptions:

IR, S]u,z < Ry 2N Su,z
R, S],. = Rew NSz
(RH 5)U7V — RU17V1 A 5U27V2
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e Membership relations M : X < 2% as further basic constants. Point-
wise description:
|\/|X7y <— xeY

If X is a direct product Y x Z, we use M instead of M and get:
Mu,R < RU]_,UQ

e Vector representation vec(R) = [R, |]; L (derived operation). Point-
wise description:
vec(R)y <= Ruum

Example (produced by RELVIEW):

(1,a)
(1.b)
(1,0
(2,a)
(2,b)

2 0 C (2,0

1 (3,a)

3 3.0
R: XY vec(R) : XxY <1 (={L})
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Columnwise Extendible Vector Expressions

For a variable r of type X <+ 1, the set VE(r) of typed columnwise ex-
tendible vector expression over r is inductively defined as follows:

e We have r € VE(r) and its type is X <> 1.
e If v: Y+« 1is a vector, then v € VE(r) and its type is Y <> 1.
o If w € VE(r) has type Y <+ 1, then v € VE(r) and its type is Y <> 1.

e If ro,u € VE(r) have both type Y <+ 1, then to Uu € VE(r) and
wNu € VE(r) and their types are Y <> 1.

o If v € VE(r) has type Y <+ 1 and R is a relation-algebraic expression
of type Z+ Y free of r, then R;w € VE(r) and its type is Z+> 1.

Examples:

r RT;(S;rUv) [r,R;r] (=mrnp;R;r)
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For all variables r of type X <+ 1, relations R : X <> Z and w € VE(r) we
denote by t[R/r| the replacement of r by R in 1.

Inductive definition:
e r[R/r] = R.
o v[R/r]=v;L, withL: 1+ Z.
o ®[R/r] = wIR/T]

o (wUu)[R/r] =w[R/rlUu[R/r] and (wvNu)[R/r] = w[R/r]Nu[R/r].
o (M;w)[R/r] =R, (w[R/r]).

Examples: For r of type X <1 and M : X <+ 2X we get:

rM/r] = M
RT;(S;ruv)[M/r] = RT;(S;MuUv;L)
[r,R;r][M/r] = [M,R;M]

If to has type Y <+ 1, then w[R/r] has type Y <> Z.
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The Method of RAMICS 2021
Recall the function
vec: [X < Y] = [XxY 1] vec(R) = [R,1]; L.
Together with the function (with 7 and p as projection relations of XxY')
Rel: [XxY < 1] = [X < Y] Rel(r) =7T;(r;LNp)

it forms a Boolean lattice isomorphism between [X <> Y] and [Xx Y <> 1].

Theorem 1. Assume the subset R of [X <> Y] to be specified as

(R ={Rel(r) | r € [XxY & 1] Av C 1},

where v, 10 € VE(r). By means of M : XX Y < [X <> Y] we get a vector
t: [X <> Y]« 1 that represents R as

T

v:=L;(o[M/r] Nro[M/r])
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The method proved to be superior to a development of the vector represen-
tation t: [X <> Y] <+ 1 from a logical specification of R to belong to R.

Drawback: A specification of R to belong to R by means of its vector re-
presentation r : Xx Y <+ 1 quite often is “unnatural”.

Some “natural” specifications:
@ Set of antisymmetric relations:

R={R|Rec[X<X]ARNRT CI}
@ Set of transitive relations:
R={R|Re[X<X]ANR,RCR}
@ Set of rectangular relations:
R={R|Re[X+<Y]AR L RCR}
@ Set of Ferrers relations:
R={R|Re[X<Y]ARR ;RCR}

We want to start with such specifications.
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Properties of Vector Representations

That the function vec is a Boolean lattice isomorphism means:

vec(R) = vec(R)
vec(RU S) = vec(R) U vec(S)
vec(RN S) = vec(R) Nvec(S)

Concerning transposition, it is known that
vec(RT) = S; vec(R),

where S :=[p, 7] : XX Y <> Y xX exchanges the components of a pair

Concerning composition, B. Kehden proved (RelMiCS/AKA 2006)

vec(Q; R; S) = (Q|| ST); vec(R).
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For a generalization of B. Kehden's result we consider:
P:=Inmpmt;p’ i (XxY)x (YxZ) (XxY) x (YxZ)

The partial mapping (univalent relation) P acts as a filter when composing
it with a suitable relation as, using partial function notation,

Pl o) = { 5D =)

For the partial mapping C:= P; (7 ||p) : (XX Y)x (Y XZ) <> XxZ we get
r oy ) (x2) if y =y’
C((Xay)a (y 72)) - { undeﬁned If_)/ ?é y/’
again using partial function notation. This suggests

vec(Q; R) = CT; [vec(Q), vec(R)]

and in fact we have been able to prove this equation relation-algebraically.
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The New Method

The last equations allow to compute vector representations via a recursive
function

vr : RE(R) — VE(r),
where r and R are variables of type XxY <> 1 and X < Y, respectively.
ve(R)=r.
v (S) = vec(S) for all relations S.
ve(R) = vr(R).
ve(RT) = S ve(R).
vr(RUG) = v, (R) U, (6).
vr(RNG) = v (R) N, (6).
v,(R; 8) = CT; [, (R), v,(6)].

Recall that RE(R) is the set of relation-algebraic expressions built from R
and VE(r) is the set of columnwise extendible vector expressions over r.
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Lemma. Let be r and R variables of type XxY <+ 1 and X <> Y, respecti-
vely. For all & € RE(R) we then have:

e v, (R) € VE(r).
e If r is instantiated as vec(R), then v, (R) = vec(R).
Proof by induction on the structure of ‘R.

Theorem 2. Assume the subset R of [X <> Y] to be specified as

where R, S € RE(R), and let r be any variable of type XxY « 1. By
means of M : Xx Y <> [X <> Y] we then get a vector v : [X <> Y]+ 1 that
represents R as

¢ = L (v (R)M/] N 0, (S)M/7])
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Proof. First, we prove that the original specification of R is equivalent to
the specification

R={R|3r:re[XxY+ 1 AR =Rel(r) Av,(R) C v (6)}
={Rel(r) | r € [XxY < 1] Av(R) C v, (6)}.

Let an arbitrary R : X <+ Y be given. Then we have

R C G <~ vec(R) C vec(6)
< yvec(R)(R) C Yvec(r)(S)
<= dr:re[XxY < 1) Ar=vec(R) A (R) C v (6)
< dr:re[XxY 1] AR =Rel(r) Av/(R) C v, (6),

where we use the lemma and that vec is a Boolean lattice isomprphism.
From the lemma we also get v,(9R) € VE(r) and v,(&) € VE(r).

Hence, Theorem 1 is applicable and yields the desired result.
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Example: Antisymmetric Relations
We consider antisymmetric relations, i.e., we use the specification

R={R|Re[X<X]ARNRT CI}.

Given any variable r of type XxX <1 we get
o for the left-hand side of RN RT C | that

v (RORY) = v, (R)Nuv(RT) = v, (R)NS; v (R) =rNS; r

such that v,(RN RT)[M/r] = M N S; M,
e for the right-hand side of RN RT C | that

v (1) = vec(l)
such that v, (1)[M/r] = vec(l); L, where L : 1+ [X < X].

Vector representation of the set of antisymmetric relations on X:

EE—
antispmm := L; (M N S; M N vec(l); L)
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Example: Transitive Relations
We consider transitive relations, i.e., we use the specification

R={R|Re[X-X]AR;RCR}.

Given any variable r of type XxX <1 we get
@ for the left-hand side of R; R C R that

v (R R) = ch. [v+(R),v(R)] = ch. Ir, ],

such that v, (R; R)[M/r] = CT; [M, M],
@ for the right-hand side of R; R C R that

v(R)=r
such that v,(R)[M/r] = M.

Vector representation of the set of transitive relations on X:

—T
teans == L; (CT; [M, M] N M)
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Implementation

RELVIEW-programs for the two projection relations 7 : Xx Y < X and
p: XXY < Y, where the parameter A : X <+ Y provides the sets X and Y:

pri(A)

DECL XY = PROD(A*A~,A"*A)

BEG RETURN p-1(XY) END. { XY <> X }
pr2(A)

DECL XY = PROD(A%*A~,A"*A)

BEG RETURN p-2(XY) END. {XY <> Y}

RELVIEW-function for the vector representation vec(R) : XxY <> 1 of
R: X+Y:

vec(R) = dom([|R,I(R"*R)]). { XY <> 11}
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RELVIEW-program for the parallel composition R||S of R: X <+ Y and
S: XY

par(R,S)
DECL A
BEG A = Ln1(R)*Ln1(8)~ {X<>Xx"}
RETURN [pri1(A)*R,pr2(A)*S]] { XX’ <> vy’ }
END.

RELVIEW-function for the relation S : Xx Y <+ Y x X, where the parame-
ter A: X < Y provides the sets X and Y:

Swap(A) = [pr2(A),pri(A)|]. { XY <> YX }
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RELVIEW-program for the relation C: (XX Y)x (Y xZ) <+« XxZ, where
the parameters A: X <> Y and B : Y < Z provide the sets X, Y, and Z:

Comp (A,B)

DECL pl, p2, ql, 92, r1, r2, H

BEG q1
q2
rl
r2
pl
p2

pri(A);
pr2(4);
pri(B);
pr2(B);
pri(g2*ri~);
pr2(q2*r1”);

H = plxq2*r1~*p2~

RETURN (I(H) & H)*par(ql,r2)

END.
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{
{
{
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{
{

XY
XY
YZ
YZ
XY
XY
XY

<-> X }
<->Y }
<->Y }
<-> 7}

YZ
YZ
YZ
YZ

<-> XY }
<-> Y7 }

<-> XY YZ }

<-> XZ }
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RELVIEW-programs for the sets of antisymmetric and transitive relations
on X, where X is provided by the parameter A : X <> X:

Antisymm(A)
DECL M, R, 1

BEG M = epsi(pri(A));

R
i

M & Swap(A)*M;
vec(I(A))*Lin(M)

RETURN -(Ln1(R)"*(R & -i))"

END.

Trans (A)
DECL M, R

BEG M = epsi(pri(A));
R = Comp(A,A) " *[|M,M]
RETURN -(Ln1(R)"*(R & -M))"

END.
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XX <-> [X<—>X] }
XX <-> [X<->X] }
XX <-> [X<->X] }
[X<->X] <-> 1 }

XX <-> [X<->X] }
XX <=> [X<->X] }
[X<->X] <> 1 }
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Conclusion

We have applied our method to many other classes of relations, e.g.,

relations having kernels
criteria for the existence of kernels

°
°
@ many of the examples presented in the RAMICS 2021 paper
@ classes of relations not treated so far, e.g.,

> |attices,

bounded partial orders,

finite directed acyclic graphs and arborescences,
tournaments,

difunctional relations,

strongly connected relations

maps having fixpoints.

vV VvV VY VY VY

What are those properties P(R) of relations R : X <+ Y which can be ex-
pressed by a finite set of inclusions R; C &; with R;, &; € RE(R) for all i?
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