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Introduction

The use of ROBDDs often leads to an amazing computational power of
RelView, in particular, if the solution of a hard problem is based on the
computation of a subset R of a powerset 2X .

In certain situations X is a direct product Y×Z , which means that R is a
subset of [Y ↔Z ], the set of relations between Y and Z .

Examples:
Solutions of a timetabling problem (B. Kehden, R. B.).
Computation of the set of up-closed multirelations (W. Guttmann).
Computational proof of a variant of the Kuratowski closure-comple-
ment-theorem (R. B.).
Experiments with sufficient criteria for the existence of kernels (R. B.).
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We present a method for the relational computation of sets R of relations
that generalizes the method presented at RAMiCS 2021.

As the method presented at RAMiCS 2021, the set R is computed as a
vector r : [X↔Y ]↔ 11 that represents R as a subset of [X↔Y ].

In contrast with the old method, however, the new method
does not specify R to belong to R by an inclusion v ⊆ w between
columnwise extendible vector expressions v,w ∈ VE(r) over a vector
representation r of R
but by an inclusion R ⊆ S between general relation-algebraic ex-
pressions R,S ∈ RE(R) as usual.

Compared with the method presented at RAMiCS 2021 the proposed new
method is much simpler and straightforward.
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The Relational Constructions we Need
Basic operations and basic constants of relation algebra.

R ∪ S R ∩ S R; S R, RT O L I

Projection relations π : X×Y ↔X and ρ : X×Y ↔Y of X×Y as
further basic constants. Pointwise description:

πu,x ⇐⇒ u1 = x ρu,y ⇐⇒ u2 = y

Left pairing [[R, S] := π; R ∩ ρ; S, right pairing [R, S]] := [[RT, ST]T

and parallel composition R ‖S := [π; R, ρ; S]] (derived operations).
Pointwise descriptions:

[[R, S]u,z ⇐⇒ Ru1,z ∧ Su2,z

[R,S]]z,u ⇐⇒ Rz,u1 ∧ Sz,u2

(R ‖S)u,v ⇐⇒ Ru1,v1 ∧ Su2,v2
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Membership relations M : X↔ 2X as further basic constants. Point-
wise description:

Mx ,Y ⇐⇒ x ∈ Y
If X is a direct product Y×Z , we use M instead of M and get:

Mu,R ⇐⇒ Ru1,u2

Vector representation vec(R) = [[R, I]; L (derived operation). Point-
wise description:

vec(R)u ⇐⇒ Ru1,u2

Example (produced by RelView):
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a b c

(1,a)

(1,b)

(1,c)

(2,a)

(2,b)

(2,c)

(3,a)

(3,b)

(3,c)

R : X↔Y vec(R) : X×Y ↔ 11 (= {⊥})
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Columnwise Extendible Vector Expressions

For a variable r of type X↔ 11, the set VE(r) of typed columnwise ex-
tendible vector expression over r is inductively defined as follows:

We have r ∈ VE(r) and its type is X↔ 11.
If v : Y ↔ 11 is a vector, then v ∈ VE(r) and its type is Y ↔ 11.
If w ∈ VE(r) has type Y ↔ 11, then w ∈ VE(r) and its type is Y ↔ 11.
If w, u ∈ VE(r) have both type Y ↔ 11, then w ∪ u ∈ VE(r) and
w ∩ u ∈ VE(r) and their types are Y ↔ 11.
If w ∈ VE(r) has type Y ↔ 11 and R is a relation-algebraic expression
of type Z↔Y free of r , then R;w ∈ VE(r) and its type is Z↔ 11.

Examples:

r RT; (S; r ∪ v) [[r ,R; r ] (= π; r ∩ ρ; R; r)
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For all variables r of type X↔ 11, relations R : X↔Z and w ∈ VE(r) we
denote by w[R/r ] the replacement of r by R in w.

Inductive definition:
r [R/r ] = R.
v [R/r ] = v ; L, with L : 11↔Z .
w[R/r ] = w[R/r ],
(w∪ u)[R/r ] = w[R/r ]∪ u[R/r ] and (w∩ u)[R/r ] = w[R/r ]∩ u[R/r ].
(R;w)[R/r ] = R; (w[R/r ]).

Examples: For r of type X↔ 11 and M : X↔ 2X we get:

r [M/r ] = M
RT; (S; r ∪ v)[M/r ] = RT; (S; M ∪ v ; L)

[[r ,R; r ][M/r ] = [[M,R; M]

If w has type Y ↔ 11, then w[R/r ] has type Y ↔Z .
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The Method of RAMiCS 2021
Recall the function

vec : [X↔Y ]→ [X×Y ↔ 11] vec(R) = [[R, I]; L.

Together with the function (with π and ρ as projection relations of X×Y )

Rel : [X×Y ↔ 11]→ [X↔Y ] Rel(r) = πT; (r ; L ∩ ρ)

it forms a Boolean lattice isomorphism between [X↔Y ] and [X×Y ↔ 11].

Theorem 1. Assume the subset R of [X↔Y ] to be specified as

R = {Rel(r) | r ∈ [X×Y ↔ 11] ∧ v ⊆ w},

where v,w ∈ VE(r). By means of M : X×Y ↔ [X↔Y ] we get a vector
r : [X↔Y ]↔ 11 that represents R as

r := L; (v[M/r ] ∩w[M/r ])
T
.
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The method proved to be superior to a development of the vector represen-
tation r : [X↔Y ]↔ 11 from a logical specification of R to belong to R.

Drawback: A specification of R to belong to R by means of its vector re-
presentation r : X×Y ↔ 11 quite often is “unnatural”.

Some “natural” specifications:
Set of antisymmetric relations:

R = {R | R ∈ [X↔X ] ∧ R ∩ RT ⊆ I}
Set of transitive relations:

R = {R | R ∈ [X↔X ] ∧ R; R ⊆ R}
Set of rectangular relations:

R = {R | R ∈ [X↔Y ] ∧ R; L; R ⊆ R}
Set of Ferrers relations:

R = {R | R ∈ [X↔Y ] ∧ R; RT; R ⊆ R}
We want to start with such specifications.
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Properties of Vector Representations
That the function vec is a Boolean lattice isomorphism means:

vec(R) = vec(R)
vec(R ∪ S) = vec(R) ∪ vec(S)
vec(R ∩ S) = vec(R) ∩ vec(S)

Concerning transposition, it is known that

vec(RT) = S; vec(R),

where S := [ρ, π]] : X×Y ↔Y×X exchanges the components of a pair

Concerning composition, B. Kehden proved (RelMiCS/AKA 2006)

vec(Q; R; S) = (Q ‖ST); vec(R).
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For a generalization of B. Kehden’s result we consider:

P := I ∩ π; ρ;πT; ρT : (X×Y )× (Y×Z )↔ (X×Y )× (Y×Z )

The partial mapping (univalent relation) P acts as a filter when composing
it with a suitable relation as, using partial function notation,

P((x , y), (y ′, z)) =
{

((x , y), (y , z)) if y = y ′

undefined if y 6= y ′.

For the partial mapping C := P; (π‖ρ) : (X×Y )×(Y×Z )↔X×Z we get

C((x , y), (y ′, z)) =
{

(x , z) if y = y ′

undefined if y 6= y ′,

again using partial function notation. This suggests

vec(Q; R) = CT; [[vec(Q), vec(R)]

and in fact we have been able to prove this equation relation-algebraically.
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The New Method
The last equations allow to compute vector representations via a recursive
function

νr : RE(R)→ VE(r),

where r and R are variables of type X×Y ↔ 11 and X↔Y , respectively.

νr (R) = r .
νr (S) = vec(S) for all relations S.
νr (R) = νr (R).
νr (RT) = S; νr (R).
νr (R ∪S) = νr (R) ∪ νr (S).
νr (R ∩S) = νr (R) ∩ νr (S).
νr (R;S) = CT; [[νr (R), νr (S)].

Recall that RE(R) is the set of relation-algebraic expressions built from R
and VE(r) is the set of columnwise extendible vector expressions over r .
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Lemma. Let be r and R variables of type X×Y ↔ 11 and X↔Y , respecti-
vely. For all R ∈ RE(R) we then have:

νr (R) ∈ VE(r).
If r is instantiated as vec(R), then νr (R) = vec(R).

Proof by induction on the structure of R.

Theorem 2. Assume the subset R of [X↔Y ] to be specified as

R = {R | R ∈ [X↔Y ] ∧R ⊆ S},

where R,S ∈ RE(R), and let r be any variable of type X×Y ↔ 11. By
means of M : X×Y ↔ [X↔Y ] we then get a vector r : [X↔Y ]↔ 11 that
represents R as

r := L; (νr (R)[M/r ] ∩ νr (S)[M/r ])
T
.

Berghammer (CAU Kiel) Representing Sets of Relations April 2023 13 / 21



Proof. First, we prove that the original specification of R is equivalent to
the specification

R = {R | ∃ r : r ∈ [X×Y ↔ 11] ∧ R = Rel(r) ∧ νr (R) ⊆ νr (S)}
= {Rel(r) | r ∈ [X×Y ↔ 11] ∧ νr (R) ⊆ νr (S)}.

Let an arbitrary R : X↔Y be given. Then we have

R ⊆ S ⇐⇒ vec(R) ⊆ vec(S)
⇐⇒ νvec(R)(R) ⊆ νvec(R)(S)
⇐⇒ ∃ r : r ∈ [X×Y ↔ 11] ∧ r = vec(R) ∧ νr (R) ⊆ νr (S)
⇐⇒ ∃ r : r ∈ [X×Y ↔ 11] ∧ R = Rel(r) ∧ νr (R) ⊆ νr (S),

where we use the lemma and that vec is a Boolean lattice isomprphism.

From the lemma we also get νr (R) ∈ VE(r) and νr (S) ∈ VE(r).

Hence, Theorem 1 is applicable and yields the desired result.
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Example: Antisymmetric Relations
We consider antisymmetric relations, i.e., we use the specification

R = {R | R ∈ [X↔X ] ∧ R ∩ RT ⊆ I}.

Given any variable r of type X×X↔ 11 we get
for the left-hand side of R ∩ RT ⊆ I that

νr (R ∩ RT) = νr (R) ∩ νr (RT) = νr (R) ∩ S; νr (R) = r ∩ S; r

such that νr (R ∩ RT)[M/r ] = M ∩ S; M,
for the right-hand side of R ∩ RT ⊆ I that

νr (I) = vec(I)

such that νr (I)[M/r ] = vec(I); L, where L : 11↔ [X↔X ].

Vector representation of the set of antisymmetric relations on X :

antisymm := L; (M ∩ S; M ∩ vec(I); L)
T
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Example: Transitive Relations
We consider transitive relations, i.e., we use the specification

R = {R | R ∈ [X↔X ] ∧ R; R ⊆ R}.

Given any variable r of type X×X↔ 11 we get
for the left-hand side of R; R ⊆ R that

νr (R; R) = CT; [[νr (R), νr (R)] = CT; [[r , r ],

such that νr (R; R)[M/r ] = CT; [[M,M],
for the right-hand side of R; R ⊆ R that

νr (R) = r

such that νr (R)[M/r ] = M.

Vector representation of the set of transitive relations on X :

trans := L; (CT; [[M,M] ∩M)
T
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Implementation

RelView-programs for the two projection relations π : X×Y ↔X and
ρ : X×Y ↔Y , where the parameter A : X↔Y provides the sets X and Y :

pr1(A)
DECL XY = PROD(A*Aˆ,Aˆ*A)
BEG RETURN p-1(XY) END. { XY <-> X }

pr2(A)
DECL XY = PROD(A*Aˆ,Aˆ*A)
BEG RETURN p-2(XY) END. { XY <-> Y }

RelView-function for the vector representation vec(R) : X×Y ↔ 11 of
R : X↔Y :

vec(R) = dom([|R,I(Rˆ*R)]). { XY <-> 1 }
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RelView-program for the parallel composition R ‖S of R : X↔Y and
S : X ′↔Y ′:

par(R,S)
DECL A
BEG A = Ln1(R)*Ln1(S)ˆ { X <-> X’ }

RETURN [pr1(A)*R,pr2(A)*S|] { XX’ <-> YY’ }
END.

RelView-function for the relation S : X×Y ↔Y×X , where the parame-
ter A : X↔Y provides the sets X and Y :

Swap(A) = [pr2(A),pr1(A)|]. { XY <-> YX }
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RelView-program for the relation C : (X×Y )×(Y×Z )↔X×Z , where
the parameters A : X↔Y and B : Y ↔Z provide the sets X , Y , and Z :

Comp(A,B)
DECL p1, p2, q1, q2, r1, r2, H
BEG q1 = pr1(A); { XY <-> X }

q2 = pr2(A); { XY <-> Y }
r1 = pr1(B); { YZ <-> Y }
r2 = pr2(B); { YZ <-> Z }
p1 = pr1(q2*r1ˆ); { XY YZ <-> XY }
p2 = pr2(q2*r1ˆ); { XY YZ <-> YZ }
H = p1*q2*r1ˆ*p2ˆ { XY YZ <-> XY YZ }
RETURN (I(H) & H)*par(q1,r2) { XY YZ <-> XZ }

END.
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RelView-programs for the sets of antisymmetric and transitive relations
on X , where X is provided by the parameter A : X↔X :

Antisymm(A)
DECL M, R, i
BEG M = epsi(pr1(A)); { XX <-> [X<->X] }

R = M & Swap(A)*M; { XX <-> [X<->X] }
i = vec(I(A))*L1n(M) { XX <-> [X<->X] }
RETURN -(Ln1(R)ˆ*(R & -i))ˆ { [X<->X] <-> 1 }

END.

Trans(A)
DECL M, R
BEG M = epsi(pr1(A)); { XX <-> [X<->X] }

R = Comp(A,A)ˆ*[|M,M] { XX <-> [X<->X] }
RETURN -(Ln1(R)ˆ*(R & -M))ˆ { [X<->X] <-> 1 }

END.
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Conclusion
We have applied our method to many other classes of relations, e.g.,

relations having kernels
criteria for the existence of kernels
many of the examples presented in the RAMiCS 2021 paper
classes of relations not treated so far, e.g.,

I lattices,
I bounded partial orders,
I finite directed acyclic graphs and arborescences,
I tournaments,
I difunctional relations,
I strongly connected relations
I maps having fixpoints.

What are those properties P(R) of relations R : X↔Y which can be ex-
pressed by a finite set of inclusions Ri ⊆ Si with Ri ,Si ∈ RE(R) for all i?
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