A General Method for Representing Sets of Relations by Vectors

Rudolf Berghammer
joint work with Michael Winter
Institut für Informatik
Christian-Albrechts-Universität zu Kiel

RAMiCS 2023

April 2023

Introduction

The use of ROBDDs often leads to an amazing computational power of RelView, in particular, if the solution of a hard problem is based on the computation of a subset \mathcal{R} of a powerset 2^{X}.

In certain situations X is a direct product $Y \times Z$, which means that \mathcal{R} is a subset of $[Y \leftrightarrow Z$], the set of relations between Y and Z.

Examples:

- Solutions of a timetabling problem (B. Kehden, R. B.).
- Computation of the set of up-closed multirelations (W. Guttmann).
- Computational proof of a variant of the Kuratowski closure-comple-ment-theorem (R.B.).
- Experiments with sufficient criteria for the existence of kernels (R. B.).

We present a method for the relational computation of sets \mathcal{R} of relations that generalizes the method presented at RAMiCS 2021.

As the method presented at RAMiCS 2021, the set \mathcal{R} is computed as a vector $\mathfrak{r}:[X \leftrightarrow Y] \leftrightarrow \mathbf{1}$ that represents \mathcal{R} as a subset of $[X \leftrightarrow Y]$.

In contrast with the old method, however, the new method

- does not specify R to belong to \mathcal{R} by an inclusion $\mathfrak{v} \subseteq \mathfrak{w}$ between columnwise extendible vector expressions $\mathfrak{v}, \mathfrak{w} \in \mathbf{V E}(r)$ over a vector representation r of R
- but by an inclusion $\mathfrak{R} \subseteq \mathfrak{S}$ between general relation-algebraic expressions $\mathfrak{R}, \mathfrak{S} \in \mathbf{R E}(R)$ as usual.

Compared with the method presented at RAMiCS 2021 the proposed new method is much simpler and straightforward.

The Relational Constructions we Need

- Basic operations and basic constants of relation algebra.

$$
R \cup S \quad R \cap S \quad R ; S \quad \bar{R}, \quad R^{\top} \quad O \quad L \quad I
$$

- Projection relations $\pi: X \times Y \leftrightarrow X$ and $\rho: X \times Y \leftrightarrow Y$ of $X \times Y$ as further basic constants. Pointwise description:

$$
\pi_{u, x} \Longleftrightarrow u_{1}=x \quad \rho_{u, y} \Longleftrightarrow u_{2}=y
$$

- Left pairing $\llbracket R, S]:=\pi ; R \cap \rho ; S$, right pairing $\left[R, S \rrbracket:=\llbracket R^{\top}, S^{\top}\right]^{\top}$ and parallel composition $R \| S:=[\pi ; R, \rho ; S \rrbracket$ (derived operations). Pointwise descriptions:

$$
\begin{aligned}
\llbracket R, S]_{u, z} & \Longleftrightarrow R_{u_{1}, z} \wedge S_{u_{2}, z} \\
{\left[R, S \rrbracket_{z, u}\right.} & \Longleftrightarrow R_{z, u_{1}} \wedge S_{z, u_{2}} \\
(R \| S)_{u, v} & \Longleftrightarrow R_{u_{1}, v_{1}} \wedge S_{u_{2}, v_{2}}
\end{aligned}
$$

- Membership relations $\mathrm{M}: X \leftrightarrow 2^{X}$ as further basic constants. Pointwise description:

$$
\mathrm{M}_{x, Y} \Longleftrightarrow x \in Y
$$

If X is a direct product $Y \times Z$, we use M instead of M and get:

$$
\mathbf{M}_{u, R} \Longleftrightarrow R_{u_{1}, u_{2}}
$$

- Vector representation $\operatorname{vec}(R)=\llbracket R, I] ; \mathrm{L}$ (derived operation). Pointwise description:

$$
\operatorname{vec}(R)_{u} \Longleftrightarrow R_{u_{1}, u_{2}}
$$

Example (produced by ReLView):

$$
R: X \leftrightarrow Y
$$

$(1, a)$	\square
$(1, b)$	\square
$(1, c)$	\square
$(2, a)$	\square
$(2, b)$	
$(2, c)$	\square
$(3, a)$	\square
$(3, b)$	\square
$(3, c)$	\square

$$
\operatorname{vec}(R): X \times Y \leftrightarrow \mathbf{1}(=\{\perp\})
$$

Columnwise Extendible Vector Expressions

For a variable r of type $X \leftrightarrow \mathbf{1}$, the set $\mathbf{V E}(r)$ of typed columnwise extendible vector expression over r is inductively defined as follows:

- We have $r \in \mathbf{V E}(r)$ and its type is $X \leftrightarrow \mathbf{1}$.
- If $v: Y \leftrightarrow \mathbf{1}$ is a vector, then $v \in \mathbf{V E}(r)$ and its type is $Y \leftrightarrow \mathbf{1}$.
- If $\mathfrak{w} \in \mathbf{V E}(r)$ has type $Y \leftrightarrow \mathbf{1}$, then $\overline{\mathfrak{w}} \in \mathbf{V E}(r)$ and its type is $Y \leftrightarrow \mathbf{1}$.
- If $\mathfrak{w}, \mathfrak{u} \in \mathbf{V E}(r)$ have both type $Y \leftrightarrow \mathbf{1}$, then $\mathfrak{w} \cup \mathfrak{u} \in \mathbf{V E}(r)$ and $\mathfrak{w} \cap \mathfrak{u} \in \mathbf{V E}(r)$ and their types are $Y \leftrightarrow \mathbf{1}$.
- If $\mathfrak{w} \in \mathbf{V E}(r)$ has type $Y \leftrightarrow \mathbf{1}$ and \mathfrak{R} is a relation-algebraic expression of type $Z \leftrightarrow Y$ free of r, then $\mathfrak{R} ; \mathfrak{w} \in \mathbf{V E}(r)$ and its type is $Z \leftrightarrow \mathbf{1}$.

Examples:

$$
\left.r \quad R^{\top} ;(S ; r \cup v) \quad \llbracket r, R ; r\right](=\pi ; r \cap \rho ; R ; r)
$$

For all variables r of type $X \leftrightarrow \mathbf{1}$, relations $R: X \leftrightarrow Z$ and $\mathfrak{w} \in \mathbf{V E}(r)$ we denote by $\mathfrak{w}[R / r]$ the replacement of r by R in \mathfrak{w}.

Inductive definition:

- $r[R / r]=R$.
- $v[R / r]=v$; L , with $\mathrm{L}: \mathbf{1} \leftrightarrow Z$.
- $\overline{\mathfrak{w}}[R / r]=\overline{\mathfrak{w}[R / r]}$,
- $(\mathfrak{w} \cup \mathfrak{u})[R / r]=\mathfrak{w}[R / r] \cup \mathfrak{u}[R / r]$ and $(\mathfrak{w} \cap \mathfrak{u})[R / r]=\mathfrak{w}[R / r] \cap \mathfrak{u}[R / r]$.
- $(\mathfrak{R} ; \mathfrak{w})[R / r]=\mathfrak{R} ;(\mathfrak{w}[R / r])$.

Examples: For r of type $X \leftrightarrow \mathbf{1}$ and $\mathrm{M}: X \leftrightarrow 2^{X}$ we get:

$$
\begin{aligned}
r[\mathrm{M} / r] & =\mathrm{M} \\
R^{\top} ;(S ; r \cup v)[\mathrm{M} / r] & =R^{\top} ;(S ; \mathrm{M} \cup v ; \mathrm{L}) \\
\llbracket r, R ; r][\mathrm{M} / r] & =\llbracket \mathrm{M}, R ; \mathrm{M}]
\end{aligned}
$$

If \mathfrak{w} has type $Y \leftrightarrow \mathbf{1}$, then $\mathfrak{w}[R / r]$ has type $Y \leftrightarrow Z$.

The Method of RAMiCS 2021

Recall the function

$$
\text { vec }:[X \leftrightarrow Y] \rightarrow[X \times Y \leftrightarrow \mathbf{1}] \quad \operatorname{vec}(R)=\llbracket R, \mathrm{I}] ; \mathrm{L} .
$$

Together with the function (with π and ρ as projection relations of $X \times Y$)

$$
\operatorname{Rel}:[X \times Y \leftrightarrow \mathbf{1}] \rightarrow[X \leftrightarrow Y] \quad \operatorname{Rel}(r)=\pi^{\top} ;(r ; \mathrm{L} \cap \rho)
$$

it forms a Boolean lattice isomorphism between [$X \leftrightarrow Y$] and $[X \times Y \leftrightarrow \mathbf{1}$].

Theorem 1. Assume the subset \mathcal{R} of $[X \leftrightarrow Y]$ to be specified as

$$
\mathcal{R}=\{\operatorname{Rel}(r) \mid r \in[X \times Y \leftrightarrow \mathbf{1}] \wedge \mathfrak{v} \subseteq \mathfrak{w}\}
$$

where $\mathfrak{v}, \mathfrak{w} \in \mathbf{V E}(r)$. By means of $\mathbf{M}: X \times Y \leftrightarrow[X \leftrightarrow Y]$ we get a vector $\mathfrak{r}:[X \leftrightarrow Y] \leftrightarrow \mathbf{1}$ that represents \mathcal{R} as

$$
\mathfrak{r}:={\overline{\mathrm{L} ;(\mathfrak{v}[\mathbf{M} / r] \cap \overline{\mathfrak{w}}[\mathbf{M} / r]}}^{\mathrm{T}}
$$

The method proved to be superior to a development of the vector representation $\mathfrak{r}:[X \leftrightarrow Y] \leftrightarrow \mathbf{1}$ from a logical specification of R to belong to \mathcal{R}.

Drawback: A specification of R to belong to \mathcal{R} by means of its vector representation $r: X \times Y \leftrightarrow \mathbf{1}$ quite often is "unnatural".

Some "natural" specifications:

- Set of antisymmetric relations:

$$
\mathcal{R}=\left\{R \mid R \in[X \leftrightarrow X] \wedge R \cap R^{\top} \subseteq \mathrm{I}\right\}
$$

- Set of transitive relations:

$$
\mathcal{R}=\{R \mid R \in[X \leftrightarrow X] \wedge R ; R \subseteq R\}
$$

- Set of rectangular relations:

$$
\mathcal{R}=\{R \mid R \in[X \leftrightarrow Y] \wedge R ; \mathrm{L} ; R \subseteq R\}
$$

- Set of Ferrers relations:

$$
\mathcal{R}=\left\{R \mid R \in[X \leftrightarrow Y] \wedge R ; \bar{R}^{\top} ; R \subseteq R\right\}
$$

We want to start with such specifications.

Properties of Vector Representations

That the function vec is a Boolean lattice isomorphism means:

$$
\begin{aligned}
\operatorname{vec}(\bar{R}) & =\overline{\operatorname{vec}(R)} \\
\operatorname{vec}(R \cup S) & =\operatorname{vec}(R) \cup \operatorname{vec}(S) \\
\operatorname{vec}(R \cap S) & =\operatorname{vec}(R) \cap \operatorname{vec}(S)
\end{aligned}
$$

Concerning transposition, it is known that

$$
\operatorname{vec}\left(R^{\top}\right)=\mathrm{S} ; \operatorname{vec}(R)
$$

where $S:=[\rho, \pi \rrbracket: X \times Y \leftrightarrow Y \times X$ exchanges the components of a pair

Concerning composition, B. Kehden proved (RelMiCS/AKA 2006)

$$
\operatorname{vec}(Q ; R ; S)=\left(Q \| S^{\top}\right) ; \operatorname{vec}(R)
$$

For a generalization of B. Kehden's result we consider:

$$
P:=\mathrm{I} \cap \pi ; \rho ; \pi^{\top} ; \rho^{\top}:(X \times Y) \times(Y \times Z) \leftrightarrow(X \times Y) \times(Y \times Z)
$$

The partial mapping (univalent relation) P acts as a filter when composing it with a suitable relation as, using partial function notation,

$$
P\left((x, y),\left(y^{\prime}, z\right)\right)= \begin{cases}((x, y),(y, z)) & \text { if } y=y^{\prime} \\ \text { undefined } & \text { if } y \neq y^{\prime}\end{cases}
$$

For the partial mapping $C:=P ;(\pi \| \rho):(X \times Y) \times(Y \times Z) \leftrightarrow X \times Z$ we get

$$
C\left((x, y),\left(y^{\prime}, z\right)\right)= \begin{cases}(x, z) & \text { if } y=y^{\prime} \\ \text { undefined } & \text { if } y \neq y^{\prime}\end{cases}
$$

again using partial function notation. This suggests

$$
\operatorname{vec}(Q ; R)=C^{\top} ; \llbracket \operatorname{vec}(Q), \operatorname{vec}(R) \rrbracket
$$

and in fact we have been able to prove this equation relation-algebraically.

The New Method

The last equations allow to compute vector representations via a recursive function

$$
\nu_{r}: \mathbf{R E}(R) \rightarrow \mathbf{V E}(r),
$$

where r and R are variables of type $X \times Y \leftrightarrow \mathbf{1}$ and $X \leftrightarrow Y$, respectively.

- $\nu_{r}(R)=r$.
- $\nu_{r}(S)=\operatorname{vec}(S)$ for all relations S.
- $\nu_{r}(\overline{\mathfrak{R}})=\overline{\nu_{r}(\Re)}$.
- $\nu_{r}\left(\mathfrak{R}^{\top}\right)=\mathrm{S} ; \nu_{r}(\Re)$.
- $\nu_{r}(\mathfrak{R} \cup \mathfrak{S})=\nu_{r}(\mathfrak{R}) \cup \nu_{r}(\mathfrak{S})$.
- $\nu_{r}(\mathfrak{R} \cap \mathfrak{S})=\nu_{r}(\mathfrak{R}) \cap \nu_{r}(\mathfrak{S})$.
- $\left.\nu_{r}(\mathfrak{R} ; \mathfrak{S})=\mathrm{C}^{\top} ; \llbracket \nu_{r}(\mathfrak{R}), \nu_{r}(\mathfrak{S})\right]$.

Recall that $\operatorname{RE}(R)$ is the set of relation-algebraic expressions built from R and $\mathrm{VE}(r)$ is the set of columnwise extendible vector expressions over r.

Lemma. Let be r and R variables of type $X \times Y \leftrightarrow \mathbf{1}$ and $X \leftrightarrow Y$, respectively. For all $\mathfrak{R} \in \mathbf{R E}(R)$ we then have:

- $\nu_{r}(\mathfrak{R}) \in \mathbf{V E}(r)$.
- If r is instantiated as $\operatorname{vec}(R)$, then $\nu_{r}(\mathfrak{R})=\operatorname{vec}(\mathfrak{R})$.

Proof by induction on the structure of \mathfrak{R}.

Theorem 2. Assume the subset \mathcal{R} of $[X \leftrightarrow Y]$ to be specified as

$$
\mathcal{R}=\{R \mid R \in[X \leftrightarrow Y] \wedge \mathfrak{R} \subseteq \mathfrak{S}\}
$$

where $\mathfrak{R}, \mathfrak{S} \in \mathbf{R E}(R)$, and let r be any variable of type $X \times Y \leftrightarrow \mathbf{1}$. By means of $\mathbf{M}: X \times Y \leftrightarrow[X \leftrightarrow Y]$ we then get a vector $\mathfrak{r}:[X \leftrightarrow Y] \leftrightarrow \mathbf{1}$ that represents \mathcal{R} as

Proof. First, we prove that the original specification of \mathcal{R} is equivalent to the specification

$$
\begin{aligned}
\mathcal{R} & =\left\{R \mid \exists r: r \in[X \times Y \leftrightarrow \mathbf{1}] \wedge R=\operatorname{Rel}(r) \wedge \nu_{r}(\mathfrak{R}) \subseteq \nu_{r}(\mathfrak{S})\right\} \\
& =\left\{\operatorname{Rel}(r) \mid r \in[X \times Y \leftrightarrow \mathbf{1}] \wedge \nu_{r}(\mathfrak{R}) \subseteq \nu_{r}(\mathfrak{S})\right\}
\end{aligned}
$$

Let an arbitrary $R: X \leftrightarrow Y$ be given. Then we have

$$
\begin{aligned}
\mathfrak{R} \subseteq \mathfrak{S} & \Longleftrightarrow \operatorname{vec}(\mathfrak{R}) \subseteq \operatorname{vec}(\mathfrak{S}) \\
& \Longleftrightarrow \nu_{\operatorname{vec}(R)}(\mathfrak{R}) \subseteq \nu_{\operatorname{vec}(R)}(\mathfrak{S}) \\
& \Longleftrightarrow \exists r: r \in[X \times Y \leftrightarrow \mathbf{1}] \wedge r=\operatorname{vec}(R) \wedge \nu_{r}(\mathfrak{R}) \subseteq \nu_{r}(\mathfrak{S}) \\
& \Longleftrightarrow \exists r: r \in[X \times Y \leftrightarrow \mathbf{1}] \wedge R=\operatorname{Rel}(r) \wedge \nu_{r}(\mathfrak{R}) \subseteq \nu_{r}(\mathfrak{S}),
\end{aligned}
$$

where we use the lemma and that vec is a Boolean lattice isomprphism.

From the lemma we also get $\nu_{r}(\mathfrak{R}) \in \mathbf{V E}(r)$ and $\nu_{r}(\mathfrak{S}) \in \mathbf{V E}(r)$.

Hence, Theorem 1 is applicable and yields the desired result.

Example: Antisymmetric Relations

We consider antisymmetric relations, i.e., we use the specification

$$
\mathcal{R}=\left\{R \mid R \in[X \leftrightarrow X] \wedge R \cap R^{\top} \subseteq I\right\}
$$

Given any variable r of type $X \times X \leftrightarrow \mathbf{1}$ we get

- for the left-hand side of $R \cap R^{\top} \subseteq 1$ that

$$
\nu_{r}\left(R \cap R^{\top}\right)=\nu_{r}(R) \cap \nu_{r}\left(R^{\top}\right)=\nu_{r}(R) \cap \mathrm{S} ; \nu_{r}(R)=r \cap \mathrm{~S} ; r
$$

such that $\nu_{r}\left(R \cap R^{\top}\right)[\mathbf{M} / r]=\mathbf{M} \cap \mathrm{S} ; \mathbf{M}$,

- for the right-hand side of $R \cap R^{\top} \subseteq I$ that

$$
\nu_{r}(\mathrm{I})=\operatorname{vec}(\mathrm{I})
$$

such that $\nu_{r}(\mathrm{I})[\mathbf{M} / r]=\operatorname{vec}(\mathrm{I}) ; \mathrm{L}$, where $\mathrm{L}: \mathbf{1} \leftrightarrow[X \leftrightarrow X]$.
Vector representation of the set of antisymmetric relations on X :

Example: Transitive Relations

We consider transitive relations, i.e., we use the specification

$$
\mathcal{R}=\{R \mid R \in[X \leftrightarrow X] \wedge R ; R \subseteq R\}
$$

Given any variable r of type $X \times X \leftrightarrow \mathbf{1}$ we get

- for the left-hand side of $R ; R \subseteq R$ that

$$
\left.\nu_{r}(R ; R)=\mathrm{C}^{\mathrm{T}} ; \llbracket \nu_{r}(R), \nu_{r}(R) \rrbracket=\mathrm{C}^{\mathrm{T}} ; \llbracket r, r\right],
$$

such that $\left.\nu_{r}(R ; R)[\mathbf{M} / r]=C^{\top} ; \llbracket \mathbf{M}, \mathbf{M}\right]$,

- for the right-hand side of $R ; R \subseteq R$ that

$$
\nu_{r}(R)=r
$$

such that $\nu_{r}(R)[\mathbf{M} / r]=\mathbf{M}$.
Vector representation of the set of transitive relations on X :

$$
\mathfrak{t r a n s}:={\overline{\mathrm{L} ;\left(\mathrm{C}^{\top} ; \llbracket \mathrm{M}, \mathbf{M}\right] \cap \overline{\mathbf{M}}}{ }^{\mathrm{\top}}}^{\mathrm{T}}
$$

Implementation

ReLView-programs for the two projection relations $\pi: X \times Y \leftrightarrow X$ and $\rho: X \times Y \leftrightarrow Y$, where the parameter $A: X \leftrightarrow Y$ provides the sets X and Y :

```
pr1(A)
    DECL XY = PROD (A*A^,A**A)
    BEG RETURN p-1(XY) END.
```

 \{ XY <-> X \}
 pr2(A)
DECL $\mathrm{XY}=\operatorname{PROD}\left(\mathrm{A} * \mathrm{~A}^{\wedge}, \mathrm{A}^{\wedge} * \mathrm{~A}\right)$
BEG RETURN p-2(XY) END.
RelView-function for the vector representation $\operatorname{vec}(R): X \times Y \leftrightarrow \mathbf{1}$ of $R: X \leftrightarrow Y:$

$$
\operatorname{vec}(R)=\operatorname{dom}\left(\left[\mid R, I\left(R^{\wedge} * R\right)\right]\right) . \quad\{X Y\langle->1\}
$$

ReLVIEW-program for the parallel composition $R \| S$ of $R: X \leftrightarrow Y$ and $S: X^{\prime} \leftrightarrow Y^{\prime}:$

```
par(R,S)
    DECL A
    BEG A = Ln1(R)*Ln1(S)^ { X <-> X' }
    RETURN [pr1(A)*R,pr2(A)*S|] { XX' <-> YY' }
```

 END.
 RelView-function for the relation $\mathrm{S}: X \times Y \leftrightarrow Y \times X$, where the parameter $A: X \leftrightarrow Y$ provides the sets X and Y :

$$
\operatorname{Swap}(A)=[\operatorname{pr2} 2(A), \operatorname{pr} 1(A) \mid] .
$$

\{ XY <-> YX \}

ReLVIEW-program for the relation $C:(X \times Y) \times(Y \times Z) \leftrightarrow X \times Z$, where the parameters $A: X \leftrightarrow Y$ and $B: Y \leftrightarrow Z$ provide the sets X, Y, and Z :

Comp (A, B)
DECL p1, p2, q1, q2, r1, r2, H
BEG $\mathrm{q} 1=\operatorname{pr1}(\mathrm{A})$;
$\mathrm{q} 2=\mathrm{pr} 2(\mathrm{~A})$;
\{ XY <-> X \}
r1 = pr1 (B) ;
r2 = pr2(B);
$\mathrm{p} 1=\operatorname{pr} 1\left(\mathrm{q} 2 * \mathrm{r} 1^{\wedge}\right)$;
p 2 = $\mathrm{pr} 2\left(\mathrm{q} 2 * \mathrm{r} 1^{\wedge}\right)$;
$\mathrm{H}=\mathrm{p} 1 * \mathrm{q} 2 * \mathrm{r} 1^{\wedge} * \mathrm{p} 2^{\wedge}$
RETURN (I (H) \& H)*par (q1,r2)
\{ XY <-> Y \}
\{ YZ <-> Y \}
\{ YZ <-> Z \}
\{ XY YZ <-> XY \}
\{ XY YZ <-> YZ \}
\{ XY YZ <-> XY YZ \}
\{ XY YZ <-> XZ \}
END.

RELVIEW-programs for the sets of antisymmetric and transitive relations on X, where X is provided by the parameter $A: X \leftrightarrow X$:

Antisymm(A)
DECL M, R, i

END.

Trans (A)
DECL M, R
BEG $\quad \mathrm{M}=\operatorname{epsi}(\mathrm{pr} 1(\mathrm{~A}))$;
$\mathrm{R}=\operatorname{Comp}(\mathrm{A}, \mathrm{A})^{\wedge} *[\mid \mathrm{M}, \mathrm{M}]$
RETURN $-\left(\operatorname{Ln} 1(\mathrm{R})^{\wedge} *(\mathrm{R} \&-\mathrm{M})\right)^{\wedge}\{[\mathrm{X}<->\mathrm{X}]<->1\}$
END.

Conclusion

We have applied our method to many other classes of relations, e.g.,

- relations having kernels
- criteria for the existence of kernels
- many of the examples presented in the RAMiCS 2021 paper
- classes of relations not treated so far, e.g.,
- lattices,
- bounded partial orders,
- finite directed acyclic graphs and arborescences,
- tournaments,
- difunctional relations,
- strongly connected relations
- maps having fixpoints.

What are those properties $P(R)$ of relations $R: X \leftrightarrow Y$ which can be expressed by a finite set of inclusions $\mathfrak{R}_{i} \subseteq \mathfrak{S}_{i}$ with $\mathfrak{R}_{i}, \mathfrak{S}_{i} \in \mathbf{R E}(R)$ for all i ?

