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BL-algebras and BL

Definition 1

A BL-algebra is a commutative, integral, bounded, prelinar, divisible residuated lattice of
the form A = (A, ∗,→,∧,∨, 0, 1). A totally ordered BL-algebra is called BL-chain.

The class of all BL-algebras forms an algebraic variety, called BL. Given a variety L of
BL-algebras, with Ch(L) we denote the class of the chains in L.

Theorem 2 ([AM03])

Every BL-chain can be uniquely decomposed (up to isomorphisms) as an ordinal sum of
totally ordered Wajsberg hoops , with the first bounded.

Let A =
⊕

i∈I Ai be a BL-chain such that I is finite. We define #A def
= |I |.
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Amalgamation property and one-sided amalgamation property

Definition 3

Let L be a class of algebras. A V-formation is a tuple (A,B, C, i , j) such that

A,B, C ∈ L, A i
↪−→ B, and A

j
↪−→ C.

We say that L has the one-sided amalgamation property (1AP), whenever for every
V-formation (A,B, C, i , j) there is a tuple (D, h, k), called 1-amalgam, such that

D ∈ L, B h
↪−→ D, k is a homomorphism from C to D, and h ◦ i = k ◦ j .

We say that L has the amalgamation property (AP), whenever for every V-formation
(A,B, C, i , j) there is a tuple (D, h, k), called an amalgam, such that D ∈ L,
B h
↪−→ D, C k

↪−→ D, and h ◦ i = k ◦ j .

For the varieties of BL-algebras a sufficient condition for the AP is the following.

Theorem 4 ([Mon06], [MMT14])

Let L be a non-trivial variety of BL-algebras. If Ch(L) enjoys the AP then the same holds
for L.
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Amalgamation property and one-sided amalgamation property: some results

Clearly the AP implies the 1AP. Interestingly, also the converse holds, if we assume that
the class of algebras L satisfies some properties. By LFSI we denote the class of finitely
subdirectly irreducible algebras of L.

Theorem 5 ([FM22])

Let L be a variety with the congruence extension property such that LFSI is closed under
subalgebras. The following are equivalent:

L has the amalgamation property.

L has the one-sided amalgamation property.

LFSI has the one-sided amalgamation property.

Every V-formation of finitely generated algebras from LFSI has an amalgam in
LFSI × LFSI = {A × B : A,B ∈ LFSI}.
Every V-formation of finitely generated algebras from LFSI has an amalgam in L.

Theorem 6 ([AB23])

A variety L of BL-algebras has the AP if and only if Ch(L) has the 1AP.
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Amalgamation property: some results

The AP for varieties of MV-algebras has already been classified.

Theorem 7 ([NL00])

A variety L of MV-algebras has the AP if and only if it is single-chain generated, i.e.
L = V(A), for some A ∈ Ch(A).

Moving to BL-algebras.

Theorem 8 ([Mon06])

Ch(BL) has the AP, and hence the variety of BL-algebras has the AP.

Differently from MV-algebras, it is not true that a variety of BL-algebras has the AP iff it
is single-chain generated.

Theorem 9

For every n ≥ 4 the variety Gn generated by the n-element Gödel-chain, does not have
the AP.

In [AB21] we classified the AP for varieties of BL-algebras which are generated by one
chain with finitely-many components.
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AP for some varieties of BL-algebras and open problems

Theorem 10 ([AB21])

Let L be a variety of BL-algebras generated by one chain with finitely many components.
Then the following are equivalent:

(i) L has the AP.

(ii) Every BL-chain A =
⊕

i∈I Ai such that V(A) = L satisfies the following conditions.

|I | ≤ 3.
There is at most one i ∈ I \ {0} such that Ai is infinite, and there is at most one
j ∈ I \ {0} such that Aj is bounded.
If |I | ≥ 2 then the following ones hold.

If A0 has infinite rank, then Lk ↪→ A0, for every k ≥ 2.
If A0 is infinite and rank(A0) = k, then Lk ↪→ A0.

Problem 11

Is it possible to classify the AP for varieties generated by one finite set of BL-chains with
finitely-many components?

In this talk we provide a partial answer, by classifying the AP for varieties generated by
one fine set of BL-chains with finitely-many components that are either finite Wajsberg
hoops or cancellative hoops.
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Main results

Theorem 12 ([AB23])

Let L be a variety generated by one finite set of BL-chains with finitely many
components, that are either finite or cancellative. Then L has the AP if and only if one
of the following two cases holds.

L = V(A), where A ∈ Ch(L), and satisfies one of the following conditions:
a) #A ≤ 2, there is at most one cancellative component, and the others are finite

(including the first-one).
b) #A = 3, two components (including the first-one) are finite, and the other one is

cancellative.

L = V({B, C}), where:
c) B, C ∈ Ch(L), #B = #C = 2.
d) (B)1 is finite, (C)1 is cancellative, and (B)0 ≃ (C)0.

Corollary 13 ([AB23])

Let S be a finite set of finite BL-chains. Then V(S) has the AP if and only there exist a
finite BL-chain A such that #A ≤ 2, and S = {A}.
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Main theorem: proof sketch

It can be shown that there exists an m-set S such that V(S) = L. We have two cases.

CASE 1 If |S | = 1, then theorem’s claim follows by Theorem 10.

CASE 2 Suppose now that |S | ≥ 2. We show the AP for L by proving the 1AP for
Ch(S) = Ch(L). An important ingredient is the following result.

Lemma 14

Let S be an m-set in which every chain has either cancellative or finite components.
Suppose that at least one of the following conditions holds:

There are A,B ∈ S such that #A = #B = k, and A ̸= B, with k ≥ 1, k ̸= 2.

There are A,B ∈ S such that #A = #B = 2, and A ̸= B, where either A,B are
both finite or (A)1, (B)1 are both cancellative.

There are A,B ∈ S such that #A = 2 and #B = 3.

Then V(S) does not have the AP.

There are a number of cases to check, but using these results (and others ) it can be
shown that Ch(L) has the 1AP if and only if S = {B, C}, where:
c) B, C ∈ Ch(L), #B = #C = 2.
d) (B)1 is finite, (C)1 is cancellative, and (B)0 ≃ (C)0.

The proof is settled.
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Open problems

Problem 15

Let L be a variety generated by a finite set S of BL-chains with finitely many
components. In which cases L has the AP?

One of the main issues with this general case concerns the following problem:

Problem 16

Let A,B be two non-trivial MV-chains. When is it possible to define a homomorphism
from A to B?

Nevertheless, we have a partial result.

Lemma 17 ([AB23])

Let S be an m-set containing a BL-chain A such that #A ≥ 2, and one of the following
holds:

(A)0 has infinite rank and Ln ̸↪→ (A)0, for some n ∈ N.
(A)0 is infinite, has rank n, and Ln ̸↪→ (A)0.

Then V(S) does not have the AP.
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Axiomatization of BL

The basic connective are {&,→,⊥} (formulas built inductively: a theory is a set of
formulas). Useful derived connectives are the following ones:

¬φ def
=φ→ ⊥(negation)

φ ∧ ψ def
=φ&(φ→ ψ)(conjunction)

φ ∨ ψ def
=((φ→ ψ) → ψ) ∧ ((ψ → φ) → φ)(disjunction)

⊤ def
=¬⊥(top)

MTL can be axiomatized by using these axioms and modus ponens: φ φ→ψ
ψ

.

(φ→ ψ) → ((ψ → χ) → (φ→ χ))(A1)

(φ&ψ) → φ(A2)

(φ&ψ) → (ψ&φ)(A3)

(φ&(φ→ ψ)) → (ψ&(ψ → φ))(A4)

(φ→ (ψ → χ)) → ((φ&ψ) → χ)(A5a)

((φ&ψ) → χ) → (φ→ (ψ → χ))(A5b)

((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ)(A6)

⊥ → φ(A7)

back
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Hoops

Definition 18 ([BF00, AFM07])

A hoop is a structure A = ⟨A, ∗,→, 1⟩ such that ⟨A, ∗, 1⟩ is a commutative monoid, and
→ is a binary operation such that

x → x = 1, x → (y → z) = (x ∗ y) → z and x ∗ (x → y) = y ∗ (y → x).

Definition 19

A bounded hoop is a hoop whose language is expanded with a constant 0 such that
0 ≤ x , for every element x ; conversely, an unbounded hoop is a hoop without minimum.

Proposition 1 ([BF00, AFM07])

A hoop is Wajsberg iff it satisfies the equation (x → y) → y = (y → x) → x.

A hoop is cancellative iff it satisfies the equation x = y → (x ∗ y).
Totally ordered cancellative hoops coincide with unbounded totally ordered Wajsberg
hoops, whereas bounded Wajsberg hoops coincide with MV-algebras.

back
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Ordinal Sums

Let ⟨I ,≤⟩ be a totally ordered set with minimum 0. For all i ∈ I , let Ai be a totally
ordered Wajsberg hoop such that for i ̸= j , Ai ∩ Aj = {1}, and assume that A0 is
bounded.

Then
⊕

i∈I Ai (the ordinal sum of the family (Ai )i∈I ) is the structure whose base
set is

⋃
i∈I Ai , whose bottom is the minimum of A0, whose top is 1, and whose

operations are

Aj

Ai

x → y =


x →Ai y if x , y ∈ Ai

y if ∃i > j(x ∈ Ai and y ∈ Aj)

1 if ∃i < j(x ∈ Ai \ {1} and y ∈ Aj)

x ∗ y =


x ∗Ai y if x , y ∈ Ai

x if ∃i < j(x ∈ Ai \ {1}, y ∈ Aj)

y if ∃i < j(y ∈ Ai \ {1}, x ∈ Aj)

As a consequence, if x ∈ Ai \ {1}, y ∈ Aj and i < j then x < y .

back
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BL-algebras

A BL-algebra is an algebra ⟨A, ∗,→,∧,∨, 0, 1⟩. such that:

1 ⟨A,∧,∨, 0, 1⟩ is a bounded lattice with minimum 0 and maximum 1.

2 ⟨A, ∗, 1⟩ is a commutative monoid.

3 ⟨∗,→⟩ forms a residuated pair: z ∗ x ≤ y iff z ≤ x → y for all x , y , z ∈ A. In
particular, it holds that x → y = max{z ∈ A : z ∗ x ≤ y}.

4 The following equations hold.

(x → y) ∨ (y → x) = 1.(Prelinearity)

(x ∧ y) = x ∗ (x → y).(Divisibility)

A totally ordered BL-algebra is called BL-chain.

The class of BL-algebras forms a variety, called BL. The logic corresponding to
BL-algebras is called BL .

An axiomatic extension of BL is a logic obtained by adding other axioms to it.

Every axiomatic extension of BL is algebraizable in the sense of [BP89], and hence
every subvariety of BL induces a logic.

back
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The failure of the AP for Ch(G4)

Pick the V-formation (A,B, C, i , j), with A,B, C ∈ Ch(G4), defined as in the picture.

•1

•b2

•b1
•0

1•

j

%%

i

<<

B •1

a•

j

%%

i

99

•d2

0•

j

""

i

99

C •d1
A •1 •0

•c2 D

•c1
•0

Since every chain in G4 has at most 4 elements, then there is no 1-amalgam in Ch(G4).

back
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Minimal set of generators and a partial list of their properties

Definition 20

A minimal set of generators (m-set) is a non-empty finite set of non-trivial BL-chains
with finitely many components, say S , such that V(T ) ⊊ V(S), for every T ⊊ S .

Lemma 21

Let S be a non-empty finite set of non-trivial BL-chains with finitely many components.
Then there exists an m-set (not necessarily unique) T ⊆ S such that V(T ) = V(S).

Lemma 22

Let L be a variety generated by one finite set of BL-chains with finitely many
components. Then,

There exists an m-set S such that V(S) = L.
If L is single-chain generated, then |S | = 1, for every m-set S such that V(S) = L.
If every chain in L is finite, then there is an m-set S containing only finite BL-chains
such that V(S) = L.
Let S be an m-set such that V(S) = L. For every A ∈ S, if A ↪→ B, with
B ∈ Ch(L), then B ∈ Ch(A).

back
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Proof of the main theorem: some technical lemmas - 1

Proposition 2

Let L be a variety of BL-algebras such that every chain has finitely many components. If
L has the AP, then every A ∈ Ch(L) satisfies the following properties.

#A ≤ 3.

If A is finite, then #A ≤ 2.

If #A = 3, then one between (A)1, (A)2 is cancellative, and the other one is finite.

Lemma 23

Let A,B be MV-chains, where A is simple, and B is non-trivial. If there is a

homomorphism k from A to B, then A k
↪−→ B.

Lemma 24

Let A,B be two non-trivial BL-chains, where (A)0 simple. If there is a homomorphism k

from A to B, then (A)0
k↾(A0)

↪−−−→ (B)0 and (A)0
k
↪−→ B.

back
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Proof of the main theorem: some technical lemmas - 2

Lemma 25 ([AM03])

Let
⊕

i∈I Ai be a non-trivial BL-chain. Then ISPu(
⊕

i∈I Ai ) = I(
⊕

i∈I SPu(Ai )),
where

⊕
i∈I SPu(Ai ) = {

⊕
i∈I Bi : Bi ∈ SPu(Ai )}.

If A is an infinite totally ordered cancellative hoop, then ISPu(A) = Ch(CH).
If A is a totally ordered Wajsberg hoop with infinite rank, and for every n ≥ 2,
Ln ↪→ A, then ISPu(A) = Ch(A).
If A is a totally ordered Wajsberg hoop with rank(A) = n, and Ln ↪→ A, then
ISPu(A) = Ch(A). If in addition A is also finite, then ISPu(A) = IS(A) = Ch(A).

Lemma 26

Let S be a finite set of BL-chains such that, for every A ∈ S.

A has finitely many components.
Each (A)i is either cancellative or it is a Wajsberg hoop with finite rank such that
(A)i/Rad((A)i ) ↪→ (A)i .

Let L = V(S). Then the following hold.

1 Ch(L) = ISPu(S) =
⋃

T ∈S ISPu(T ).

2 In particular, for every A =
⊕k

i=0 Ai ∈ S such that (A)0 is finite,

Ch(A) = I(S(A0)⊕
⊕k

i=1 SPu(Ai )).
3 If every A ∈ S is finite, then Ch(L) = IS(S) =

⋃
T ∈S IS(T ).

back
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