Prenuclear vs. nuclear objects in *-autonomous categories

RAMiCS 2023, Augsburg

Luigi Santocanale Cédric de Lacroix

Laboratoire d'Informatique et Système (LIS)
Aix-Marseille Université (AMU)

April 3, 2023

Next

1. Recaps, motivations, and a conjecture

2. Frobenius structures

3. A partial solution of the conjecture

4. Questioning pseudoaffine

Frobenius quantales

Definition

A Frobenius quantale is a quantale (Q, \star) coming with antitone "negations" ${ }^{\perp}(-),(-)^{\perp}: Q \longrightarrow Q$ satisfying:

$$
\begin{aligned}
\left({ }^{\perp} x\right)^{\perp} & ={ }^{\perp}\left(x^{\perp}\right)=x \\
x \rightarrow{ }^{\perp} y & =x^{\perp} \circ-y
\end{aligned}
$$

(inverse to each other) (contraposition law)

- A provability model of non-commutative classical linear logic.
- Similar to involutive residuated lattice, but complete.
- Such a quantale is until if and only if it has a dualizing element.
- The above axiomatization allows to consider Frobenius quantales with neither a unit nor a dualizing element.

Frobenius quantales

Definition

A Frobenius quantale is a quantale (Q, \star) coming with antitone "negations" ${ }^{\perp}(-),(-)^{\perp}: Q \longrightarrow Q$ satisfying:

$$
\begin{aligned}
\left({ }^{\perp} x\right)^{\perp} & ={ }^{\perp}\left(x^{\perp}\right)=x \\
x \rightarrow{ }^{\perp} y & =x^{\perp} \circ y
\end{aligned}
$$

(inverse to each other)
(contraposition law)

Remarks

- A provability model of non-commutative classical linear logic.
- Similar to involutive residuated lattice, but complete.
- Such a quantale is until if and only if it has a dualizing element.
- The above axiomatization allows to consider Frobenius quantales with neither a unit nor a dualizing element.

Motivations

Theorem (Egger, Kruml, Paseka ~ 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:

1. The quantale $[L, L]_{\vee}$ of join-preserving endomaps of L is Frobenius.
2. L is a completely distributive lattice.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuelear shients in the entegory of complete sup-lattices are exactly the completely distributive lattice.

Motivations

Theorem (Egger, Kruml, Paseka ~ 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:

1. The quantale $[L, L]_{\vee}$ of join-preserving endomaps of L is Frobenius.
2. L is a completely distributive lattice.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects in the category of complete sup-lattices are exactly the completely distributive lattice.

Motivations

Conjecture

Let A be an object of a SMCC. The following are equivalent:

1. The object $[A, A]$ of endomorphisms of A has a Frobenius structure.
2. A is nuclear.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of the category of complete sup-lattices are exactly the completely distributive lattices.

Next

1. Recaps, motivations, and a conjecture
2. Frobenius structures

3. A partial solution of the conjecture

4. Questioning pseudoaffine

Dual pairings

Definition

A triple (A, B, ϵ) is said to be a dual pairing (w.r.t. the object 0) if

$$
\epsilon: A \otimes B \longrightarrow 0
$$

and the two induced natural transformations are isomorphims.

$$
\operatorname{hom}(X, B) \longrightarrow \operatorname{hom}(A \otimes X, 0), \quad \operatorname{hom}(X, A) \longrightarrow \operatorname{hom}(X \otimes B, 0)
$$

Dual pairings

Definition

A triple (A, B, ϵ) is said to be a dual pairing (w.r.t. the object 0) if

$$
\epsilon: A \otimes B \longrightarrow 0
$$

and the two induced natural transformations are isomorphims.

$$
\operatorname{hom}(X, B) \longrightarrow \operatorname{hom}(A \otimes X, 0), \quad \operatorname{hom}(X, A) \longrightarrow \operatorname{hom}(X \otimes B, 0)
$$

Example

- In a *-autonomous category

$$
e v: A \otimes A^{*} \longrightarrow 0, \quad \epsilon:\left(A \otimes A^{*}\right) \otimes[A, A] \longrightarrow 0
$$

are dual pairings.

- In SLatt, the map

$$
\epsilon(x, y)= \begin{cases}\perp, & x \leq y, \\ \top, & x \not \leq y,\end{cases}
$$

yields a dual pairing $\epsilon_{L}: L \otimes L^{\mathrm{op}} \longrightarrow \mathbf{2}$.

Frobenius quantales, once more

In a Frobenius quantale $\left(Q, \star,{ }^{\perp}(-),(-)^{\perp}\right)$, we have

- $\left(Q, Q^{\text {op }}, \epsilon\right)$ is a dual pairing;
- (Q, \star) is a semigroup;
- ${ }^{\perp}(-),(-)^{\perp}: Q \rightarrow Q^{\text {op }}$ and $x \leq^{\perp} y$ iff $y \leq x^{\perp}$;
- $y \rightarrow{ }^{\perp} x=y^{\perp} \circ x$

$$
\begin{gathered}
Q \otimes Q \xrightarrow{Q \otimes(-)^{\perp}} Q \otimes Q^{\mathrm{op}} \\
\stackrel{{ }^{\perp}(-) \otimes Q \downarrow}{\downarrow^{\circ}} \begin{array}{l}
\alpha^{\ell} \\
Q^{\mathrm{op}} \otimes Q \xrightarrow[\alpha^{\rho}]{ } Q^{\mathrm{op}} .
\end{array} .
\end{gathered}
$$

Frobenius structures

Definition

A Frobenius structure is a tuple $\left(A, B, \epsilon, \mu_{A}, l, r\right)$ where

- (A, B, E) is a dual pairing;
- $\left(A, \mu_{A}\right)$ is a semigroup;
- $I r \cdot A \longrightarrow R$ and $(I r)$ is an adjunction with both maps invertible

Frobenius structures

Definition

A Frobenius structure is a tuple $\left(A, B, \epsilon, \mu_{A}, l, r\right)$ where

- (A, B, ϵ) is a dual pairing;
- $\left(A, \mu_{A}\right)$ is a semigroup;
- $I, r: A \longrightarrow B$ and (I, r) is an adjunction with both maps invertible such that

$$
\begin{array}{cc}
A \otimes A \xrightarrow{A \otimes r} A \otimes B \\
l \otimes A \downarrow & \\
& \downarrow^{\ell} \\
B \otimes A \xrightarrow[\alpha^{\rho}]{ } & B .
\end{array}
$$

Next

1. Recaps, motivations, and a conjecture
2. Frobenius structures
3. A partial solution of the conjecture

4. Questioning pseudoaffine

Nuclearity

From here, \mathcal{V} is symmetric monoidal closed and $0=I$.
Definition
For every object A of C, there exists a canonical arrow

$$
\operatorname{mix}_{A}: A^{*} \otimes A \longrightarrow[A, A]
$$

An object A is nuclear if mix $_{A}$ is an isomorphism.
Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of SLatt are exactly the completely distributive lattices.

From Nuclearity to Frobenius structure, and back

Theorem (LS and CL, CSL 2023)
If an object A of \mathcal{V} is nuclear, then $[A, A]$ can be endowed with a Frobenius structure.

Definition
An object A of \mathcal{V}, is pseudoaffine if (either is initial or) I embeds into A as a
retract (i.e if there exists $p: I \rightarrow A$ and $c: A \rightarrow I$ such that $c \circ p=i d_{l}$.).

Example
Fverv ohiect of SLatt, K-Vect, Coh HypCoh, is pseudoaffine

From Nuclearity to Frobenius structure, and back

Theorem (LS and CL, CSL 2023)

If an object A of \mathcal{V} is nuclear, then $[A, A]$ can be endowed with a Frobenius structure.
If \mathcal{V} is $*$-autonomous and A is pseudoaffine, then the converse hold.

```
Definition An obiect \(A \mathrm{cf} V\), is pseudoaffine if (either is initial or) / embeds into \(A\) as a retract (i.e if there exists p
```

Example
Fvery ohiect of SLatt, K-Vect, Coh HypCoh, is pseudoaffine

From Nuclearity to Frobenius structure, and back

Theorem (LS and CL, CSL 2023)
If an object A of \mathcal{V} is nuclear, then $[A, A]$ can be endowed with a Frobenius structure.
If \mathcal{V} is $*$-autonomous and A is pseudoaffine, then the converse hold.

Definition
An object A of \mathcal{V}, is pseudoaffine if (either is initial or) I embeds into A as a retract (i.e if there exists $p: I \rightarrow A$ and $c: A \rightarrow I$ such that $c \circ p=i d_{I}$. .).

Example

Every object of SLatt, k-Vect, Coh HypCoh, is pseudoaffine.

Next

1. Recaps, motivations, and a conjecture
2. Frobenius structures
3. A partial solution of the conjecture
4. Questioning pseudoaffine

Is pseudoaffine necessary?

Question:
Can we have a $*$-autonomous category \mathcal{V} and a object A of \mathcal{V} such that

- A is not nuclear,
- A is not pseudoaffine,
- A is prenuclear, that is $[A, A]$ is Frobenius ?

Definition (Schalk and de Paiva 2004 category P-Set)
Let (P, \leq) be a poset (the base category). We define the category P-Set:

- An object: a pair (X, α) with X a set and $\alpha: X \rightarrow P$;
- An arrow $(X, \alpha) \rightarrow(Y, \beta)$: a relation $R \in P(X \times Y)$ such that x Ry implies $\alpha(x) \leq \beta(y)$.

Theorem (Schalk and de Paiva 2004)
For $(Q, \star, 1)$ a unital commutative Frobenius quantale, Q-Set is $*$-autonomous.

Various characterisations

We take Q such that $1=0$ in Q, so $I=0$ in Q-Set.
Lemmas
A Q-Set (X, α) is

- nceudnaffine iff $\alpha(x)=1$, for some $x \in X$,
- nuclear iff

Equivalently: iff $\alpha(x)$ is invertible $(\forall x)$

- nranticlear iff for a nair of invarse manc (f, g) on X

Various characterisations

We take Q such that $1=0$ in Q, so $I=0$ in Q-Set.

Lemmas

A Q-Set (X, α) is

- pseudoaffine iff $\alpha(x)=1$, for some $x \in X$,
- nuclear iff,

$$
\alpha(x) \multimap \alpha(y)=\alpha(x)^{\perp} \star \alpha(y)
$$

Equivalently: iff $\alpha(x)$ is invertible ($\forall x$)

- prenuclear iff, for a pair of inverse maps (f, g) on X,

$$
\alpha(x) \multimap \alpha(y)=\alpha(f x)^{\perp} \star \alpha(y)=\alpha(x)^{\perp} \star \alpha(g y) \quad(\forall x, y)
$$

Finding the right Q

- Take \mathbb{Z}.
- Add $\pm \infty$.
- Add a new unit u such that $0<u<1$.

Then $\mathbb{Z} \subseteq Q$ is prenuclear, with $f(x)=x-1$ and $g(x)-x+1$.

Discussing the pseudoaffine condition

We take Q such that $1=0$ in Q, so $I=0$ in Q-Set.
Theorem (LS and CL)
If (X, α) is prenuclear and any of the following conditions holds:

- the quantale Q has no infinite chain,
- X is finite,
- $\alpha(x)$ is invertible, for some $x \in X$,
- (X, α) is Girard, that is, $f=g$,
then (X, α) is nuclear.

Theorem (LS and CL)
There is a quantale Q and an object (X, a) of Q-Set which is prenuclear but not
nuclear.

Discussing the pseudoaffine condition

We take Q such that $1=0$ in Q, so $I=0$ in Q-Set.
Theorem (LS and CL)
If (X, α) is prenuclear and any of the following conditions holds:

- the quantale Q has no infinite chain,
- X is finite,
- $\alpha(x)$ is invertible, for some $x \in X$,
- (X, α) is Girard, that is, $f=g$,
then (X, α) is nuclear.

Theorem (LS and CL)

There is a quantale Q and an object (X, α) of Q-Set which is prenuclear but not nuclear.

Conclusions

Results

- A definition of Frobenius structures in autonomous categories.
- Proof of our conjecture up to a technical (but quite natural) hypothesis (pseudoaffine).
- Other results,e.g. an abstraction of the double negation construction.
- Testing the pseudoaffine condition.
- What about Girard quantales/structures and nuclearity ?
- I Inderstand "how much" we need *-autonnmois categories.
- Monoidal fibrations.

Conclusions

Results

- A definition of Frobenius structures in autonomous categories.
- Proof of our conjecture up to a technical (but quite natural) hypothesis (pseudoaffine).
- Other results,e.g. an abstraction of the double negation construction.
- Testing the pseudoaffine condition.

To do next

- What about Girard quantales/structures and nuclearity ?
- Understand "how much" we need $*$-autonomous categories.
- Monoidal fibrations.

Thank you!

References

D. A.Higgs et K. A. Rowe (1989)

Nuclearity in the category of complete semilattices, Journal of Pure and Applied Algebra, Volume 57, Issue 1, 1989, Pages 67-78
R. Street (2004)

Frobenius monads and pseudomonoids, Journal of Mathematical Physics, Vol. 45, 2004, pp 3930-3948

David Kruml and Jan Paseka (2008)
Algebraic and Categorical Aspects of Quantales, Handbook of Algebra, Vol. 5, pp 323-362
J.M. Egger (2010)

The Frobenius relations meet linear distributivity, Theory and Applications of Categories, Vol. 24, 2010, No. 2, pp 25-38

References

P-A. Melliès (2013)
Dialogue categories and Frobenius monoids Lecture Notes in Computer Science, vol 7860

P. Eklund, J. Gutiérrez Garcia, U. Höhle et J. Kortelainen (2018)

Semigroups in complete lattices, Springer, 2018

L. Santocanale (2020)

The involutive quantaloid of completely distributive lattices, RAMICS 2020

L. Santocanale (2020)

Dualizing sup-preserving endomaps of a complete lattice, ACT 2020
T
C. de Lacroix and L. Santocanale (2023)

Frobenius Structures in Star-Autonomous Categories. CSL 2023, LIPIcs, vol. 252

