Frobenius structures

A partial solution of the conjecture 000

Questioning pseudoaffine

Prenuclear vs. nuclear objects in *-autonomous categories

RAMiCS 2023, Augsburg

Luigi Santocanale Cédric de Lacroix

Laboratoire d'Informatique et Système (LIS) Aix-Marseille Université (AMU)

April 3, 2023

・ロト・日本・ キョン・ヨン・ヨ

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

1. Recaps, motivations, and a conjecture

2. Frobenius structures

3. A partial solution of the conjecture

4. Questioning pseudoaffine

:

▲□▶▲□▶▲□▶▲□▶ □ のへで

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Frobenius quantales

Definition

A **Frobenius quantale** is a quantale (Q, \star) coming with antitone "negations" $^{\perp}(-), (-)^{\perp} : Q \longrightarrow Q$ satisfying:

> $({}^{\perp}x)^{\perp} = {}^{\perp}(x^{\perp}) = x$ (inverse to each other) $x \multimap {}^{\perp}y = x^{\perp} \multimap y$ (contraposition law)

Remarks

- A provability model of non-commutative classical linear logic.
- Similar to involutive residuated lattice, but complete.
- Such a quantale is until if and only if it has a dualizing element.
- The above axiomatization allows to consider Frobenius quantales with neither a unit nor a dualizing element.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Frobenius quantales

Definition

A **Frobenius quantale** is a quantale (Q, \star) coming with antitone "negations" $^{\perp}(-), (-)^{\perp} : Q \longrightarrow Q$ satisfying:

 $({}^{\perp}x)^{\perp} = {}^{\perp}(x^{\perp}) = x$ (inverse to each other) $x \multimap {}^{\perp}y = x^{\perp} \multimap y$ (contraposition law)

Remarks

- A provability model of non-commutative classical linear logic.
- Similar to involutive residuated lattice, but complete.
- Such a quantale is until if and only if it has a dualizing element.
- The above axiomatization allows to consider Frobenius quantales with neither a unit nor a dualizing element.

A partial solution of the conjecture

Questioning pseudoaffine

Motivations

Theorem (Egger, Kruml, Paseka ~ 2008, Santocanale 2020) Let L be a complete lattice. The following are equivalent:

- **1.** The quantale $[L, L]_{\vee}$ of join-preserving endomaps of L is Frobenius.
- 2. L is a completely distributive lattice.

Theorem (Raney 1960, Higgs and Rowe 1989)

The nuclear objects in the category of complete sup-lattices are exactly the completely distributive lattice.

A partial solution of the conjecture

Questioning pseudoaffine

Motivations

Theorem (Egger, Kruml, Paseka ~ 2008, Santocanale 2020) Let L be a complete lattice. The following are equivalent:

- **1.** The quantale $[L, L]_{\vee}$ of join-preserving endomaps of L is Frobenius.
- 2. L is a completely distributive lattice.

Theorem (Raney 1960, Higgs and Rowe 1989)

The nuclear objects in the category of complete sup-lattices are exactly the completely distributive lattice.

イロト イポト イヨト イヨト 二日

A partial solution of the conjecture 000

Questioning pseudoaffine

Motivations

Conjecture

Let A be an object of a SMCC. The following are equivalent:

- 1. The object [A, A] of endomorphisms of A has a Frobenius structure.
- 2. A is nuclear.

Theorem (Raney 1960, Higgs and Rowe 1989)

The nuclear objects of the category of complete sup-lattices are exactly the completely distributive lattices.

イロト イポト イヨト イヨト 三日

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

1. Recaps, motivations, and a conjecture

2. Frobenius structures

3. A partial solution of the conjecture

4. Questioning pseudoaffine

:

・ロト・日本・山下・山下・ 日・ うくぐ

A partial solution of the conjecture

Questioning pseudoaffine

Dual pairings

Definition

A triple (A, B, ϵ) is said to be a *dual pairing* (w.r.t. the object 0) if

 $\epsilon: A \otimes B \longrightarrow 0$

and the two induced natural transformations are isomorphims.

 $\operatorname{hom}(X,B) \longrightarrow \operatorname{hom}(A \otimes X,0), \quad \operatorname{hom}(X,A) \longrightarrow \operatorname{hom}(X \otimes B,0).$

Example

In a *-autonomous category

 $ev: A \otimes A^* \longrightarrow 0, \qquad \epsilon: (A \otimes A^*) \otimes [A, A] \longrightarrow 0$

are dual pairings.

In SLatt, the map

$$\epsilon(x,y) = \begin{cases} \bot, & x \le y, \\ \top, & x \nleq y, \end{cases}$$

yields a dual pairing $\epsilon_L : L \otimes L^{op} \longrightarrow 2$. $(\Box \rightarrow \langle \Box \rangle \land \exists \land \exists \land \exists \land \neg \land \bigcirc$

A partial solution of the conjecture

Questioning pseudoaffine

Dual pairings

Definition

A triple (A, B, ϵ) is said to be a *dual pairing* (w.r.t. the object 0) if

 $\epsilon: A \otimes B \longrightarrow 0$

and the two induced natural transformations are isomorphims.

 $\operatorname{hom}(X,B) \longrightarrow \operatorname{hom}(A \otimes X,0), \quad \operatorname{hom}(X,A) \longrightarrow \operatorname{hom}(X \otimes B,0).$

Example

In a *-autonomous category

$$ev: A \otimes A^* \longrightarrow 0, \qquad \epsilon: (A \otimes A^*) \otimes [A, A] \longrightarrow 0$$

are dual pairings.

• In SLatt, the map

$$\epsilon(x,y) = \begin{cases} \bot, & x \leq y, \\ \top, & x \notin y, \end{cases}$$

yields a dual pairing $\epsilon_L : L \otimes L^{op} \longrightarrow 2$.

7/21

A partial solution of the conjecture

Questioning pseudoaffine

Frobenius quantales, once more

In a Frobenius quantale $(Q, \star, {}^{\perp}(-), (-)^{\perp})$, we have

- (Q, Q^{op}, ϵ) is a dual pairing;
- (Q, *) is a semigroup;
- $^{\perp}(-), (-)^{\perp} : Q \rightarrow Q^{\text{op}} \text{ and } x \leq ^{\perp}y \text{ iff } y \leq x^{\perp};$

8/21

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Frobenius structures

Definition A *Frobenius structure* is a tuple $(A, B, \epsilon, \mu_A, l, r)$ where

- (A, B, ϵ) is a dual pairing;
- (A, μ_A) is a semigroup;
- $l, r : A \longrightarrow B$ and (l, r) is an adjunction with both maps invertible

such that

・ロト・日本・日本・日本・日本・日本

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Frobenius structures

Definition

A **Frobenius structure** is a tuple $(A, B, \epsilon, \mu_A, l, r)$ where

- (A, B, ϵ) is a dual pairing;
- (A, μ_A) is a semigroup;
- $l, r : A \longrightarrow B$ and (l, r) is an adjunction with both maps invertible

such that

$$\begin{array}{ccc} A \otimes A & \xrightarrow{A \otimes r} & A \otimes B \\ \downarrow_{\otimes A} & & \downarrow_{\alpha^{\ell}} \\ B \otimes A & \xrightarrow{\alpha^{\rho}} & B. \end{array}$$

きしてき かんがく かんしょう

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

1. Recaps, motivations, and a conjecture

2. Frobenius structures

3. A partial solution of the conjecture

4. Questioning pseudoaffine

:

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

From here, \mathcal{V} is symmetric monoidal closed and 0 = I.

Definition

For every object A of C, there exists a canonical arrow

$$\min_{A} : A^* \otimes A \longrightarrow [A, A].$$

An object A is *nuclear* if mix_A is an isomorphism.

Theorem (Raney 1960, Higgs and Rowe 1989)

The nuclear objects of SLatt are exactly the completely distributive lattices.

・ロト・四ト・モート 正 うらの

Questioning pseudoaffine

From Nuclearity to Frobenius structure, and back

Theorem (LS and CL, CSL 2023)

If an object A of \mathcal{V} is nuclear, then [A, A] can be endowed with a Frobenius structure.

If \mathcal{V} is *-autonomous and A is pseudoaffine, then the converse hold.

Definition

An object *A* of \mathcal{V} , is **pseudoaffine** if (either is initial or) *I* embeds into *A* as a retract (*i.e* if there exists $p : I \rightarrow A$ and $c : A \rightarrow I$ such that $c \circ p = id_{I}$.).

Example

Every object of SLatt, k-Vect, Coh HypCoh, is pseudoaffine.

・ロ・・一日・・川田・・日・ 日・ シュの

Questioning pseudoaffine

From Nuclearity to Frobenius structure, and back

Theorem (LS and CL, CSL 2023)

If an object A of \mathcal{V} is nuclear, then [A, A] can be endowed with a Frobenius structure.

If \mathcal{V} is *-autonomous and A is pseudoaffine, then the converse hold.

Definition

An object *A* of \mathcal{V} , is **pseudoaffine** if (either is initial or) *I* embeds into *A* as a retract (*i.e* if there exists $p : I \rightarrow A$ and $c : A \rightarrow I$ such that $c \circ p = id_{I}$.).

Example

Every object of SLatt, k-Vect, Coh HypCoh, is pseudoaffine.

Questioning pseudoaffine

From Nuclearity to Frobenius structure, and back

Theorem (LS and CL, CSL 2023)

If an object A of $\mathcal V$ is nuclear, then [A, A] can be endowed with a Frobenius structure.

If \mathcal{V} is *-autonomous and A is pseudoaffine, then the converse hold.

Definition

An object *A* of \mathcal{V} , is *pseudoaffine* if (either is initial or) *I* embeds into *A* as a retract (*i.e* if there exists $p : I \rightarrow A$ and $c : A \rightarrow I$ such that $c \circ p = id_{I}$.).

Example

Every object of SLatt, k-Vect, Coh HypCoh, is pseudoaffine.

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

1. Recaps, motivations, and a conjecture

2. Frobenius structures

3. A partial solution of the conjecture

4. Questioning pseudoaffine

:

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

A partial solution of the conjecture

Questioning pseudoaffine

Is pseudoaffine necessary ?

Question:

Can we have a $\ast\text{-autonomous}$ category $\mathcal V$ and a object A of $\mathcal V$ such that

- A is not nuclear,
- A is not pseudoaffine,
- A is prenuclear, that is [A, A] is Frobenius ?

Definition (Schalk and de Paiva 2004 category P-Set)

Let (P, \leq) be a poset (the base category). We define the category *P*-Set:

- An object: a pair (X, α) with X a set and $\alpha : X \to P$;
- An arrow $(X, \alpha) \rightarrow (Y, \beta)$: a relation $R \in P(X \times Y)$ such that xRy implies $\alpha(x) \le \beta(y)$.

Theorem (Schalk and de Paiva 2004)

For $(Q, \star, 1)$ a unital commutative Frobenius quantale, Q-Set is *-autonomous.

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Various characterisations

We take Q such that 1 = 0 in Q, so I = 0 in Q-Set.

Lemmas

A Q-Set (X, α) is

- pseudoaffine iff $\alpha(x) = 1$, for some $x \in X$,
- nuclear iff,

$$\alpha(x) \multimap \alpha(y) = \alpha(x)^{\perp} \star \alpha(y) \tag{(\forall x, y)}$$

Equivalently: iff $\alpha(x)$ is invertible $(\forall x)$

prenuclear iff, for a pair of inverse maps (f, g) on X,

$$\alpha(x) \multimap \alpha(y) = \alpha(fx)^{\perp} \star \alpha(y) = \alpha(x)^{\perp} \star \alpha(gy) \qquad (\forall x, y)$$

Frobenius structures

A partial solution of the conjecture 000

Questioning pseudoaffine

Various characterisations

We take Q such that 1 = 0 in Q, so I = 0 in Q-Set.

Lemmas

A Q-Set (X, α) is

- pseudoaffine iff $\alpha(x) = 1$, for some $x \in X$,
- nuclear iff,

$$\alpha(x) \multimap \alpha(y) = \alpha(x)^{\perp} \star \alpha(y) \qquad (\forall x, y)$$

Equivalently: iff $\alpha(x)$ is invertible $(\forall x)$

• prenuclear iff, for a pair of inverse maps (f, g) on X,

$$\alpha(x) \multimap \alpha(y) = \alpha(fx)^{\perp} \star \alpha(y) = \alpha(x)^{\perp} \star \alpha(gy) \qquad (\forall x, y)$$

・ロト・西・・川・・ 一世・ く日・

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Finding the right Q

- Take ℤ.
- Add ±∞.
- Add a new unit u such that 0 < u < 1.

Then $\mathbb{Z} \subseteq Q$ is prenuclear, with f(x) = x - 1 and g(x) - x + 1.

A partial solution of the conjecture

Questioning pseudoaffine

Discussing the pseudoaffine condition

We take Q such that 1 = 0 in Q, so I = 0 in Q-Set.

Theorem (LS and CL)

If (X, α) is prenuclear and any of the following conditions holds:

- the quantale Q has no infinite chain,
- X is finite,
- $\alpha(x)$ is invertible, for some $x \in X$,
- (X, α) is Girard, that is, f = g,

then (X, α) is nuclear.

Theorem (LS and CL)

There is a quantale Q and an object (X, α) of Q-**Set** which is prenuclear but not nuclear.

イロト イロト イヨト イヨト 三日

A partial solution of the conjecture

Questioning pseudoaffine

Discussing the pseudoaffine condition

We take Q such that 1 = 0 in Q, so I = 0 in Q-Set.

Theorem (LS and CL)

If (X, α) is prenuclear and any of the following conditions holds:

- the quantale Q has no infinite chain,
- X is finite,
- $\alpha(x)$ is invertible, for some $x \in X$,
- (X, α) is Girard, that is, f = g,

then (X, α) is nuclear.

Theorem (LS and CL)

There is a quantale Q and an object (X, α) of Q-**Set** which is prenuclear but not nuclear.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A partial solution of the conjecture 000

Questioning pseudoaffine

Conclusions

Results

- A definition of Frobenius structures in autonomous categories.
- Proof of our conjecture up to a technical (but quite natural) hypothesis (pseudoaffine).
- Other results, e.g. an abstraction of the double negation construction.
- Testing the pseudoaffine condition.

To do next

- What about Girard quantales/structures and nuclearity ?
- Understand "how much" we need *-autonomous categories.
- Monoidal fibrations.

A partial solution of the conjecture

Questioning pseudoaffine

Conclusions

Results

- A definition of Frobenius structures in autonomous categories.
- Proof of our conjecture up to a technical (but quite natural) hypothesis (pseudoaffine).
- Other results, e.g. an abstraction of the double negation construction.
- Testing the pseudoaffine condition.

To do next

- What about Girard quantales/structures and nuclearity ?
- Understand "how much" we need *-autonomous categories.
- Monoidal fibrations.

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

Thank you!

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

19/21

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

References

D. A.Higgs et K. A. Rowe (1989)

Nuclearity in the category of complete semilattices, *Journal of Pure and Applied Algebra*, Volume 57, Issue 1, 1989, Pages 67-78

R. Street (2004)

Frobenius monads and pseudomonoids, *Journal of Mathematical Physics*, Vol. 45, 2004, pp 3930-3948

David Kruml and Jan Paseka (2008)

Algebraic and Categorical Aspects of Quantales, Handbook of Algebra, Vol. 5, pp 323-362

J.M. Egger (2010)

The Frobenius relations meet linear distributivity, *Theory and Applications of Categories*, Vol. 24, 2010, No. 2, pp 25-38

・ロト・日本・モト・モト・ ヨー うへぐ

Frobenius structures

A partial solution of the conjecture

Questioning pseudoaffine

References

P-A. Melliès (2013)

Dialogue categories and Frobenius monoids Lecture Notes in Computer Science, vol 7860

P. Eklund, J. Gutiérrez Garcia, U. Höhle et J. Kortelainen (2018)

Semigroups in complete lattices, Springer, 2018

L. Santocanale (2020)

The involutive quantaloid of completely distributive lattices, RAMICS 2020

L. Santocanale (2020)

Dualizing sup-preserving endomaps of a complete lattice, ACT 2020

C. de Lacroix and L. Santocanale (2023)

Frobenius Structures in Star-Autonomous Categories. CSL 2023, LIPIcs, vol. 252