The Structure of Locally Integral Involutive PO-Monoids and Semirings

José Gil-Férez

Joint work with Peter Jipsen and Siddhartha Lodhia

RAMiCS 2023

3-6 April, Augsburg, Germany

Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for short, is a structure $(A, \leqslant, \cdot, 1, \sim, -)$ such that

- (A, \leqslant) is a poset,
- $(A, \cdot, 1)$ is a monoid,

•
$$x \leqslant y \iff x \cdot \sim y \leqslant 0 \iff -y \cdot x \leqslant 0$$
 (ineg),

where 0 = -1

Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for short, is a structure $(A,\leqslant,\cdot,1,\sim,-)$ such that

- (A, \leqslant) is a poset,
- $(A, \cdot, 1)$ is a monoid,

•
$$x \leqslant y \iff x \cdot \sim y \leqslant 0 \iff -y \cdot x \leqslant 0$$
 (ineg),

where $0 = -1 = \sim 1$.

Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for short, is a structure $(A, \leqslant, \cdot, 1, \sim, -)$ such that

- (*A*, ≤) is a poset,
- $(A, \cdot, 1)$ is a monoid,

•
$$x \leqslant y \iff x \cdot \sim y \leqslant 0 \iff -y \cdot x \leqslant 0$$
 (ineg),

where 0 = -1 = -1.

Some examples: all groups (if \leq is =), all partially ordered groups (where $\sim x = -x = x^{-1}$), MV-algebras are ipo-monoids (V, \wedge are definable).

double negation: rotation: antitonicity: residuation (res): constants:

$\sim -x = x = -\sim x$
$x \cdot y \leqslant z \iff y \cdot \sim z \leqslant \sim x \iff -z \cdot x \leqslant -y$
$x \leqslant y \iff -y \leqslant -x \iff -y \leqslant -x$
$x \cdot y \leqslant z \iff x \leqslant -(y \cdot \sim z) \iff y \leqslant \sim (-z \cdot x)$
$0={\sim}1, {\sim}0=1 \text{ and } -0=1.$

double negation:	$\sim -x = x = -\sim x$
rotation:	$x \cdot y \leqslant z \iff y \cdot \sim z \leqslant \sim x \iff -z \cdot x \leqslant -y$
antitonicity:	$x \leqslant y \iff -y \leqslant -x \iff -y \leqslant -x$
residuation (res):	$x \cdot y \leqslant z \iff x \leqslant -(y \cdot \sim z) \iff y \leqslant \sim (-z \cdot x)$
constants:	$0=\sim 1, \sim 0=1 \text{ and } -0=1.$

(res) provides the **residuals** $z/y = -(y \cdot z)$ and $x \mid z = -(z \cdot x)$. $x \cdot y \leq z \iff x \leq z/y \iff y \leq x \mid z$.

double negation:	$\sim -x = x = -\sim x$
rotation:	$x \cdot y \leqslant z \iff y \cdot \sim z \leqslant \sim x \iff -z \cdot x \leqslant -y$
antitonicity:	$x \leqslant y \iff \neg y \leqslant \neg x \iff -y \leqslant -x$
residuation (res):	$x \cdot y \leqslant z \iff x \leqslant -(y \cdot \sim z) \iff y \leqslant \sim (-z \cdot x)$
constants:	$0 = \sim 1, \sim 0 = 1 \text{and} -0 = 1.$

(res) provides the **residuals** $z/y = -(y \cdot -z)$ and $x \setminus z = -(-z \cdot x)$. $x \cdot y \leq z \iff x \leq z/y \iff y \leq x \setminus z$.

It follows that \cdot is **order-preserving** in both arguments.

double negation:	$\sim -x = x = -\sim x$
rotation:	$x \cdot y \leqslant z \iff y \cdot \sim z \leqslant \sim x \iff -z \cdot x \leqslant -y$
antitonicity:	$x \leqslant y \iff -y \leqslant -x \iff -y \leqslant -x$
residuation (res):	$x \cdot y \leqslant z \iff x \leqslant -(y \cdot \sim z) \iff y \leqslant \sim (-z \cdot x)$
constants:	$0=\sim 1, \sim 0=1 \text{ and } -0=1.$

(res) provides the residuals $z/y = -(y \cdot -z)$ and $x \setminus z = -(-z \cdot x)$.

 $x \cdot y \leqslant z \quad \Longleftrightarrow \quad x \leqslant z/y \quad \Longleftrightarrow \quad y \leqslant x \backslash z.$

It follows that \cdot is order-preserving in both arguments.

Ipo-monoids satisfy: $x \setminus -y = -x/y$. (So Frobenius quantales are ipo-monoids.)

An ipo-monoid is **integral** if it satisfies the inequality $x \leq 1$.

(Since \sim , - are dual order-isomorphisms, integrality implies $0 \leq x$.)

An ipo-monoid is **integral** if it satisfies the inequality $x \leq 1$.

(Since \sim , - are dual order-isomorphisms, integrality implies $0 \leq x$.)

An ipo-monoid is locally integral if it satisfies

•
$$-x \cdot x = x \cdot \sim x$$
,

- multiplication is square-decreasing, i.e., $x^2 \leq x$,
- \downarrow 0-idempotence, i.e., $x \leq 0 \implies x^2 = x$.

An ipo-monoid is **integral** if it satisfies the inequality $x \leq 1$.

(Since \sim , - are dual order-isomorphisms, integrality implies $0 \leq x$.)

An ipo-monoid is locally integral if it satisfies

- $-x \cdot x = x \cdot \sim x$, (equivalently, $x \setminus x = x/x$),
- multiplication is square-decreasing, i.e., $x^2 \leqslant x$,
- \downarrow 0-idempotence, i.e., $x \leq 0 \implies x^2 = x$.

An ipo-monoid is **integral** if it satisfies the inequality $x \leq 1$.

(Since \sim , - are dual order-isomorphisms, integrality implies $0 \leq x$.)

An ipo-monoid is locally integral if it satisfies

- $-x \cdot x = x \cdot \sim x$, (equivalently, $x \setminus x = x/x$),
- multiplication is square-decreasing, i.e., $x^2 \leqslant x$,
- \downarrow 0-idempotence, i.e., $x \leq 0 \implies x^2 = x$.

Proposition

Every integral ipo-monoid is locally integral.

Positive Elements

Let $A^+ = \{x \in A \mid 1 \leq x\}$ be the **positive cone** of *A*.

Notice

$$1 \cdot x = x \implies 1 \cdot x \leq x \implies 1 \leq x/x.$$

Positive Elements

Let $A^+ = \{x \in A \mid 1 \leq x\}$ be the **positive cone** of *A*.

Notice

$$1 \cdot x = x \implies 1 \cdot x \leq x \implies 1 \leq x/x.$$

These terms are *important* enough to introduce *special notation*:

$$1_x = x/x = x \setminus x$$
 and $0_x = \sim 1_x = -1_x$

We also have $1_x = -0_x = -0_x$. Moreover, $1_x, 0_x$ are idempotent.

•
$$0_{\sim x} = 0_{-x} = 0_x$$
 and $1_{\sim x} = 1_{-x} = 1_x$,

•
$$0_{\sim x} = 0_{-x} = 0_x$$
 and $1_{\sim x} = 1_{-x} = 1_x$,
• $x \in [0_x, 1_x]$,

$$[\mathbf{0}_x,\mathbf{1}_x] = \{ a \in A \colon \mathbf{0}_x \leqslant a \leqslant \mathbf{1}_x \}$$

•
$$0_{\sim x} = 0_{-x} = 0_x$$
 and $1_{\sim x} = 1_{-x} = 1_x$,

•
$$x \in [0_x, 1_x]$$
,

•
$$1_x \cdot y = y \iff 1_x \leqslant 1_y$$
,

$$[\mathbf{0}_x,\mathbf{1}_x] = \{ \mathbf{a} \in A \colon \mathbf{0}_x \leqslant \mathbf{a} \leqslant \mathbf{1}_x \}$$

•
$$0_{\sim x} = 0_{-x} = 0_x$$
 and $1_{\sim x} = 1_{-x} = 1_x$,

•
$$x \in [0_x, 1_x]$$
,

•
$$1_x \cdot y = y \iff 1_x \leqslant 1_y$$
,

•
$$y \in [0_x, 1_x] \iff [0_y, 1_y] \subseteq [0_x, 1_x]$$
,

$$[\mathbf{0}_x,\mathbf{1}_x] = \{ a \in A \colon \mathbf{0}_x \leqslant a \leqslant \mathbf{1}_x \}$$

The following properties hold in every *locally integral* ipo-monoid **A**:

•
$$0_{\sim x} = 0_{-x} = 0_x$$
 and $1_{\sim x} = 1_{-x} = 1_x$,

•
$$x \in [0_x, 1_x]$$
,

•
$$1_x \cdot y = y \iff 1_x \leqslant 1_y$$
,

•
$$y \in [0_x, 1_x] \iff [0_y, 1_y] \subseteq [0_x, 1_x],$$

•
$$y \in A_x \iff y \in [0_x, 1_x] \text{ and } 1_x \cdot y = y.$$

 $[\mathbf{0}_x,\mathbf{1}_x]=\{a\in A\colon \mathbf{0}_x\leqslant a\leqslant \mathbf{1}_x\} \ \text{ and } A_x=\{y\in A:\mathbf{1}_x=\mathbf{1}_y\}.$

Canonical Representatives for the A_{x} Equivalence Classes

 $x \equiv y \iff 1_x = 1_y$ is an equivalence relation.

Hence the equivalence classes $\{A_x : x \in A\}$ partition A.

Canonical Representatives for the A_{χ} Equivalence Classes

 $x \equiv y \iff 1_x = 1_y$ is an equivalence relation.

Hence the equivalence classes $\{A_x : x \in A\}$ partition A.

Lemma

Let **A** be a locally integral ipo-monoid, and $p, a, x \in A$.

- $p \in A^+ \iff p = 1_p.$
- $a \in \downarrow 0 \iff a = 0_a$.
- $A_x \cap A^+ = \{1_x\}.$
- $A_x \cap \downarrow 0 = \{0_x\}.$

Canonical Representatives for the A_x Equivalence Classes

 $x \equiv y \iff 1_x = 1_y$ is an equivalence relation.

Hence the equivalence classes $\{A_x : x \in A\}$ partition A.

Lemma

Let **A** be a locally integral ipo-monoid, and $p, a, x \in A$.

- $p \in A^+ \iff p = 1_p$.
- $a \in \downarrow 0 \iff a = 0_a$.
- $A_x \cap A^+ = \{1_x\}.$
- $A_x \cap \downarrow 0 = \{0_x\}.$

It follows that the classes A_x are **indexed** by the elements of A^+ .

Theorem

Let **A** be a locally integral ipo-monoid. For every p in A^+ ,

- A_p is closed under $\sim, -, \cdot$,
- $\mathbf{A}_p = (A_p,\leqslant,\cdot,1_p,\sim,-)$ is an integral ipo-monoid,
- if (A,\leqslant) is a lattice then $(A_p,\leqslant,0_p,1_p)$ is a bounded lattice.

The structures A_p are called the **integral components** of **A**.

Representation of the structure of a locally integral ipo-monoid

Proposition

All positive elements of a locally integral ipo-monoid A are central,

for every $p \in A^+$ and every $x \in A$, $p \cdot x = x \cdot p$.

Products Between Components

Lemma If **A** is a locally integral, $p, q \in A^+$,

$$x \in A_p \text{ and } y \in A_q \implies x \cdot y \in A_{pq}.$$

Moreover, $1_p \cdot 1_q = 1_{pq}$ and $0_p \cdot 0_q = 0_{pq}$.

Products Between Components

Lemma If **A** is a locally integral, $p, q \in A^+$,

$$x \in A_p \text{ and } y \in A_q \implies x \cdot y \in A_{pq}.$$

Moreover, $1_p \cdot 1_q = 1_{pq}$ and $0_p \cdot 0_q = 0_{pq}$.

The idempotence of all $p, q \in A^+$ implies $p \cdot q = p \lor q$.

Products Between Components

Lemma If **A** is a locally integral, $p, q \in A^+$,

$$x \in A_p \text{ and } y \in A_q \implies x \cdot y \in A_{pq}.$$

Moreover,
$$1_p \cdot 1_q = 1_{pq}$$
 and $0_p \cdot 0_q = 0_{pq}$.

The idempotence of all $p, q \in A^+$ implies $p \cdot q = p \lor q$.

By duality, $a, b \leq 0$ implies $a \cdot b = a \wedge b$.

A family $\varphi_{ij} \colon \mathbf{A}_i \to \mathbf{A}_j$ of homomorphisms is **compatible** if

- $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$, if $i \leq j \leq k$,
- φ_{ii} is the identity on \mathbf{A}_i .

A family $\varphi_{ij} \colon \mathbf{A}_i \to \mathbf{A}_j$ of homomorphisms is **compatible** if

- $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$, if $i \leq j \leq k$,
- φ_{ii} is the identity on \mathbf{A}_i .

If $\{\varphi_{ij} : \mathbf{A}_i \to \mathbf{A}_j : i \leq j\}$ is indexed by the order of a lower-bounded join-semilattice (I, \lor, \bot) , its **Płonka sum** is the algebra **S** with universe $\biguplus_{i \in I} A_i$ and

A family $\varphi_{ij} \colon \mathbf{A}_i \to \mathbf{A}_j$ of homomorphisms is **compatible** if

•
$$\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$$
, if $i \leq j \leq k$,

• φ_{ii} is the identity on \mathbf{A}_i .

If $\{\varphi_{ij} : \mathbf{A}_i \to \mathbf{A}_j : i \leq j\}$ is indexed by the order of a lower-bounded join-semilattice (I, \lor, \bot) , its **Płonka sum** is the algebra **S** with universe $\biguplus_{i \in I} A_i$ and

•
$$a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}, \sigma$$
 n-ary, $j = i_1 \lor \cdots \lor i_n$,

$$\sigma^{\mathbf{S}}(a_1,\ldots,a_n)=\sigma^{\mathbf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n)),$$

A family $\varphi_{ij} \colon \mathbf{A}_i \to \mathbf{A}_j$ of homomorphisms is **compatible** if

•
$$\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$$
, if $i \leq j \leq k$,

• φ_{ii} is the identity on \mathbf{A}_i .

If $\{\varphi_{ij} : \mathbf{A}_i \to \mathbf{A}_j : i \leq j\}$ is indexed by the order of a lower-bounded join-semilattice (I, \lor, \bot) , its **Płonka sum** is the algebra **S** with universe $\biguplus_{i \in I} A_i$ and

•
$$a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}, \sigma$$
 n-ary, $j = i_1 \vee \cdots \vee i_n$,

$$\sigma^{\mathbf{S}}(a_1,\ldots,a_n)=\sigma^{\mathbf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n)),$$

• if σ is constant, $\sigma^{\mathbf{S}} = c^{\mathbf{A}_{\perp}}$.

For positive $p \leqslant q$, define $\varphi_{pq} \colon A_p \to A_q$ by $\varphi_{pq}(x) = q \cdot x$.

Proposition

Let **A** be a locally integral ipo-monoid and $p \leq q$ positive.

• φ_{pq} : $\mathbf{A}_p \rightarrow \mathbf{A}_q$ is a monoidal homomorphism,

(Notice:
$$\varphi_{pq}(xy) = qxy = qqxy = qxqy = \varphi_{pq}(x)\varphi_{pq}(y)$$
.)

For positive $p \leqslant q$, define $\varphi_{pq} \colon A_p \to A_q$ by $\varphi_{pq}(x) = q \cdot x$.

Proposition

Let **A** be a locally integral ipo-monoid and $p \leq q$ positive.

- φ_{pq} : $\mathbf{A}_p \rightarrow \mathbf{A}_q$ is a monoidal homomorphism,
- it respects arbitrary nonempty existing join, so it's monotone,

(Notice:
$$\varphi_{pq}(xy) = qxy = qqxy = qxqy = \varphi_{pq}(x)\varphi_{pq}(y)$$
.)

For positive $p \leq q$, define $\varphi_{pq} \colon A_p \to A_q$ by $\varphi_{pq}(x) = q \cdot x$.

Proposition

Let **A** be a locally integral ipo-monoid and $p \leq q$ positive.

- φ_{pq} : $\mathbf{A}_p \rightarrow \mathbf{A}_q$ is a monoidal homomorphism,
- it respects arbitrary nonempty existing join, so it's monotone,
- (A⁺, ·, 1) is a lower-bounded join semilattice.

(Notice:
$$\varphi_{pq}(xy) = qxy = qqxy = qxqy = \varphi_{pq}(x)\varphi_{pq}(y)$$
.)

For positive $p \leq q$, define $\varphi_{pq} \colon A_p \to A_q$ by $\varphi_{pq}(x) = q \cdot x$.

Proposition

Let **A** be a locally integral ipo-monoid and $p \leq q$ positive.

- φ_{pq} : $\mathbf{A}_p \rightarrow \mathbf{A}_q$ is a monoidal homomorphism,
- it respects arbitrary nonempty existing join, so it's monotone,
- (A⁺, ·, 1) is a lower-bounded join semilattice.
- {φ_{pq} : p ≤ q} is a compatible family of monoidal homomorphisms.

(Notice: $\varphi_{pq}(xy) = qxy = qqxy = qxqy = \varphi_{pq}(x)\varphi_{pq}(y)$.)

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Then their Płonka sum $(\biguplus A_p, \cdot^{\mathbf{S}}, 1^{\mathbf{S}})$ is the monoidal reduct of **A**.

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Then their Płonka sum $(\biguplus A_p, \cdot^{\mathbf{S}}, 1^{\mathbf{S}})$ is the monoidal reduct of **A**.

Define $\sim^{\mathbf{S}} x = \sim^{\mathbf{A}_{p}} x$ and $-^{\mathbf{S}} x = -^{\mathbf{A}_{p}} x$, for every $x \in A_{p}$.

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Then their Płonka sum $(\biguplus A_p, \cdot^{\mathbf{S}}, 1^{\mathbf{S}})$ is the monoidal reduct of **A**.

Define $\sim^{\mathbf{S}} x = \sim^{\mathbf{A}_{p}} x$ and $-^{\mathbf{S}} x = -^{\mathbf{A}_{p}} x$, for every $x \in A_{p}$.

 $\textit{Define } x \leqslant^{\textbf{S}} y \iff x \cdot^{\textbf{S}} \sim^{\textbf{S}} y = 0_{\rho q}, \quad \textit{for all } x \in A_{\rho}, \ y \in A_{q}.$

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Then their Płonka sum $(\biguplus A_p, \cdot^{S}, 1^{S})$ is the monoidal reduct of **A**.

Define $\sim^{\mathbf{S}} x = \sim^{\mathbf{A}_{p}} x$ and $-^{\mathbf{S}} x = -^{\mathbf{A}_{p}} x$, for every $x \in A_{p}$.

Define $x \leq {}^{\mathbf{S}} y \iff x \cdot {}^{\mathbf{S}} \sim {}^{\mathbf{S}} y = 0_{pq}$, for all $x \in A_p$, $y \in A_q$. Then $([+] A_p, \leq {}^{\mathbf{S}}, \cdot {}^{\mathbf{S}}, \sim {}^{\mathbf{S}}, -{}^{\mathbf{S}}) = \mathbf{A}$.

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Then their Płonka sum $(\biguplus A_p, \cdot^{\mathbf{S}}, 1^{\mathbf{S}})$ is the monoidal reduct of **A**.

Define $\sim^{\mathbf{S}} x = \sim^{\mathbf{A}_p} x$ and $-^{\mathbf{S}} x = -^{\mathbf{A}_p} x$, for every $x \in A_p$.

Define
$$x \leq {}^{\mathbf{S}} y \iff x \cdot {}^{\mathbf{S}} \sim {}^{\mathbf{S}} y = 0_{pq}$$
, for all $x \in A_p$, $y \in A_q$.
Then $(\biguplus A_p, \leq {}^{\mathbf{S}}, \cdot {}^{\mathbf{S}}, \sim {}^{\mathbf{S}}, -{}^{\mathbf{S}}) = \mathbf{A}$.

Moreover, if **A** is in InRL then all \mathbf{A}_p are in InRL.

Theorem

Let **A** be a locally integral ipo-monoid and $\{\varphi_{pq} : p \leq q\}$ as before.

Then their Płonka sum $(\biguplus A_p, \cdot^{S}, 1^{S})$ is the monoidal reduct of **A**.

Define $\sim^{\mathbf{S}} x = \sim^{\mathbf{A}_p} x$ and $-^{\mathbf{S}} x = -^{\mathbf{A}_p} x$, for every $x \in A_p$.

Define
$$x \leq {}^{\mathbf{S}} y \iff x \cdot {}^{\mathbf{S}} \sim {}^{\mathbf{S}} y = 0_{pq}$$
, for all $x \in A_p$, $y \in A_q$.
Then $(\biguplus A_p, \leq {}^{\mathbf{S}}, \cdot {}^{\mathbf{S}}, \sim {}^{\mathbf{S}}, -{}^{\mathbf{S}}) = \mathbf{A}$.

Moreover, if **A** is in InRL then all \mathbf{A}_p are in InRL.

Furthermore, **A** is commutative if and only if all its components are commutative

A Generic Example with 4 Integral Components

Let $(D, \lor, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} : \mathbf{A}_p \to \mathbf{A}_q : p \leqslant^D q\}$ compat. family of monoidal hom.

Let $(D, \lor, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} \colon \mathbf{A}_p \to \mathbf{A}_q : p \leqslant^D q\}$ compat. family of monoidal hom.

Define the structure:

$$\int_{\Phi} \mathbf{A}_{p} = \left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G}, -^{G} \right)$$

where $\left(\biguplus_{D} A_{\rho}, \cdot^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ

Let $(D, \lor, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} \colon \mathbf{A}_p \to \mathbf{A}_q : p \leqslant^D q\}$ compat. family of monoidal hom.

Define the structure:

$$\int_{\Phi} \mathbf{A}_{p} = \left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G}, -^{G} \right)$$

where $(\biguplus_D A_p, \cdot^G, 1^G)$ is the Płonka sum of the family Φ and for all $p, q \in D$, $a \in A_p$, and $b \in A_q$,

•
$$\sim^{G} a = \sim_{p} a$$
 and $-^{G} a = -_{p} a$,

Let $(D, \lor, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} \colon \mathbf{A}_p \to \mathbf{A}_q : p \leqslant^D q\}$ compat. family of monoidal hom.

Define the structure:

$$\int_{\Phi} \mathbf{A}_{p} = \left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G}, -^{G} \right)$$

where $(\biguplus_D A_p, \cdot^G, 1^G)$ is the Płonka sum of the family Φ and for all $p, q \in D$, $a \in A_p$, and $b \in A_q$,

Let $(D, \lor, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} \colon \mathbf{A}_p \to \mathbf{A}_q : p \leqslant^D q\}$ compat. family of monoidal hom.

Define the structure:

$$\int_{\Phi} \mathbf{A}_{p} = \left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G}, -^{G} \right)$$

where $(\biguplus_D A_p, \cdot^G, 1^G)$ is the Płonka sum of the family Φ and for all $p, q \in D$, $a \in A_p$, and $b \in A_q$,

Let $(D, \lor, 1)$ be a lower-bounded join-semilattice; $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \sim_p, -_p)$ integral ipo-monoid, for every $p \in D$; $\Phi = \{\varphi_{pq} \colon \mathbf{A}_p \to \mathbf{A}_q : p \leqslant^D q\}$ compat. family of monoidal hom.

Define the structure:

$$\int_{\Phi} \mathbf{A}_{p} = \left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G}, -^{G} \right)$$

where $(\biguplus_D A_p, \cdot^G, 1^G)$ is the Płonka sum of the family Φ and for all $p, q \in D$, $a \in A_p$, and $b \in A_q$,

•
$$\sim^G a = \sim_p a$$
 and $-^G a = -_p a$,
• $a \leq^G b \iff a \cdot^G \sim^G b = 0_{p \vee q}$.

 $\int_{\Phi} \mathbf{A}_{p}$ is the glueing of $\{\mathbf{A}_{p} : p \in D\}$ along the family Φ .

A Sugihara Glueing of Copies of the Standard MV-chain

Glueing L_3 into a Small IMTL-algebra

Glueing of Integral ipo-monoids that is not an ipo-monoid

The relation \leq of $\int_{\Phi} \mathbf{A}_{\rho}$ is not transitive.

Required Conditions for Glueing Integral ipo-monoids

(balanced): for all
$$p, q \in D, a \in A_p, b \in A_q$$
,
 $a \cdot {}^G \sim {}^G b = 0_{p \lor q} \iff -{}^G b \cdot {}^G a = 0_{p \lor q}$.
(zero): for all $p \leq {}^D q$, $\varphi_{pq}(0_p) = 0_q \iff p = q$.

(tr): for all $a, b, c \in \biguplus A_p$, if $a \leqslant^G b$ and $b \leqslant^G c$, then $a \leqslant^G c$.

Main Glueing Result

Theorem

A structure **A** is a locally integral ipo-monoid if and only if there is

- a lower-bounded join-semilattice **D**,
- a family of integral ipo-monoids $\{\mathbf{A}_p : p \in D\}$, and
- a compatible family Φ = {φ_{pq}: A_p → A_q : p ≤^D q} of monoidal homomorphisms satisfying (bal), (zero), and (tr)

so that $\mathbf{A} = \int_{\mathbf{\Phi}} \mathbf{A}_{p}$.

Glueing of infinitely many Boolean algebras that produces an involutive semiring

Two glueings, one being a semiring, the other no

Two glueings, one being a semiring, the other no

The condition (tr) can be replaced by more "local" condition.

• for all $p \leqslant^{\mathsf{D}} q$, and $a, b \in A_p$, $a \leqslant_p b \implies \varphi_{pq}(a) \leqslant_q \varphi_{pq}(b)$; (mon)

• for all
$$p \leqslant^{\mathsf{D}} q$$
, $p \leqslant^{\mathsf{D}} r$, and $a \in A_p$, $\sim \varphi_{pq}(a) \leqslant^{\mathsf{G}} \varphi_{pr}(\sim a)$; (lax)

• for all $p \lor r \leq^{\mathsf{D}} v$, $a \in A_p$, and $b \in A_r$,

$$\varphi_{rv}(\sim b) \leqslant_{v} \sim \varphi_{pv}(a) \implies a \leqslant^{\mathbf{G}} b. \qquad (\sim \mathsf{lax})$$

The condition (tr) can be replaced by more "local" condition.

• for all $p \leqslant^{\mathsf{D}} q$, and $a, b \in A_p$, $a \leqslant_p b \implies \varphi_{pq}(a) \leqslant_q \varphi_{pq}(b)$; (mon)

• for all
$$p \leqslant^{\mathsf{D}} q$$
, $p \leqslant^{\mathsf{D}} r$, and $a \in A_{p}$, $\sim \varphi_{pq}(a) \leqslant^{\mathsf{G}} \varphi_{pr}(\sim a)$; (lax)

• for all $p \lor r \leqslant^{\mathsf{D}} v$, $a \in A_p$, and $b \in A_r$,

$$\varphi_{rv}(\sim b) \leqslant_{v} \sim \varphi_{pv}(a) \implies a \leqslant^{\mathsf{G}} b. \qquad (\sim \mathsf{lax})$$

A locally integral ipo-monoid **A** is idempotent if and only if all its integral components are Boolean algebras.

The condition (tr) can be replaced by more "local" condition.

• for all $p \leqslant^{\mathsf{D}} q$, and $a, b \in A_p$, $a \leqslant_p b \implies \varphi_{pq}(a) \leqslant_q \varphi_{pq}(b)$; (mon)

• for all
$$p \leqslant^{\mathsf{D}} q$$
, $p \leqslant^{\mathsf{D}} r$, and $a \in A_p$, $\sim \varphi_{pq}(a) \leqslant^{\mathsf{G}} \varphi_{pr}(\sim a)$; (lax)

• for all $p \lor r \leqslant^{\mathsf{D}} v$, $a \in A_p$, and $b \in A_r$,

$$\varphi_{rv}(\sim b) \leqslant_{v} \sim \varphi_{pv}(a) \implies a \leqslant^{\mathsf{G}} b. \qquad (\sim \mathsf{lax})$$

A locally integral ipo-monoid **A** is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., **A** satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

The condition (tr) can be replaced by more "local" condition.

• for all $p \leq^{\mathsf{D}} q$, and $a, b \in A_p$, $a \leq_p b \implies \varphi_{pq}(a) \leq_q \varphi_{pq}(b)$; (mon)

• for all
$$p \leqslant^{\mathsf{D}} q$$
, $p \leqslant^{\mathsf{D}} r$, and $a \in A_p$, $\sim \varphi_{pq}(a) \leqslant^{\mathsf{G}} \varphi_{pr}(\sim a)$; (lax)

• for all $p \lor r \leqslant^{\mathsf{D}} v$, $a \in A_p$, and $b \in A_r$,

$$\varphi_{rv}(\sim b) \leqslant_{v} \sim \varphi_{pv}(a) \implies a \leqslant^{\mathsf{G}} b. \qquad (\sim \mathsf{lax})$$

A locally integral ipo-monoid **A** is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., **A** satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

Under which conditions A is lattice-ordered?

The condition (tr) can be replaced by more "local" condition.

• for all $p \leq^{\mathsf{D}} q$, and $a, b \in A_p$, $a \leq_p b \implies \varphi_{pq}(a) \leq_q \varphi_{pq}(b)$; (mon)

• for all
$$p \leqslant^{\mathsf{D}} q$$
, $p \leqslant^{\mathsf{D}} r$, and $a \in A_{p}$, $\sim \varphi_{pq}(a) \leqslant^{\mathsf{G}} \varphi_{pr}(\sim a)$; (lax)

• for all $p \lor r \leqslant^{\mathsf{D}} v$, $a \in A_p$, and $b \in A_r$,

$$\varphi_{rv}(\sim b) \leqslant_{v} \sim \varphi_{pv}(a) \implies a \leqslant^{\mathsf{G}} b. \qquad (\sim \mathsf{lax})$$

A locally integral ipo-monoid **A** is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., **A** satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

Under which conditions A is lattice-ordered?

Are locally integral ipo-monoids or InRLs decidable?

References

- P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, **82**, 57, 2021.
- P. Jipsen, S. Vannucci, Injective and projective semimodules over involutive semirings, J. of Algebra and its Applications, (2021) https://doi.org/10.1142/S0219498822501821
 - W. McCune: Prover9 and Mace4. https://www.cs.unm.edu/~mccune/prover9/, 2005-2010.

THANKS!