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José Gil-Férez
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Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for
short, is a structure (A,⩽, ·, 1,∼,−) such that

• (A,⩽) is a poset,

• (A, ·, 1) is a monoid,

• x ⩽ y ⇐⇒ x · ∼y ⩽ 0 ⇐⇒ −y · x ⩽ 0 (ineg),

where 0 = −1

= ∼1.

Some examples: all groups (if ⩽ is =), all partially ordered
groups (where ∼x = −x = x−1), MV-algebras are ipo-monoids
(∨,∧ are definable).
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Some Properties of ipo-monoids

double negation: ∼−x = x = −∼x

rotation: x · y ⩽ z ⇐⇒ y · ∼z ⩽ ∼x ⇐⇒ −z · x ⩽ −y

antitonicity: x ⩽ y ⇐⇒ ∼y ⩽ ∼x ⇐⇒ −y ⩽ −x

residuation (res): x · y ⩽ z ⇐⇒ x ⩽ −(y ·∼z) ⇐⇒ y ⩽ ∼(−z ·x)
constants: 0 = ∼1, ∼0 = 1 and −0 = 1.

(res) provides the residuals z/y = −(y ·∼z) and x\z = ∼(−z ·x).

x · y ⩽ z ⇐⇒ x ⩽ z/y ⇐⇒ y ⩽ x\z .

It follows that · is order-preserving in both arguments.

Ipo-monoids satisfy: x\−y = ∼x/y . (So Frobenius quantales are ipo-monoids.)
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Locally Integral ipo-monoids

An ipo-monoid is integral if it satisfies the inequality x ⩽ 1.

(Since ∼,− are dual order-isomorphisms, integrality implies 0 ⩽ x .)

An ipo-monoid is locally integral if it satisfies

• −x · x = x · ∼x ,

(equivalently, x\x = x/x),

• multiplication is square-decreasing, i.e., x2 ⩽ x ,

• ↓0-idempotence, i.e., x ⩽ 0 =⇒ x2 = x .

Proposition

Every integral ipo-monoid is locally integral.
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Positive Elements

Let A+ = {x ∈ A | 1 ⩽ x} be the positive cone of A.

Notice

1 · x = x =⇒ 1 · x ⩽ x =⇒ 1 ⩽ x/x .

These terms are important enough to introduce special notation:

1x = x/x = x\x and 0x = ∼1x = −1x

We also have 1x = ∼0x = −0x . Moreover, 1x , 0x are idempotent.
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Properties of Locally Integral ipo-monoids

The following properties hold in every locally integral
ipo-monoid A:

• 0∼x = 0−x = 0x and 1∼x = 1−x = 1x ,

• x ∈ [0x , 1x ],

• 1x · y = y ⇐⇒ 1x ⩽ 1y ,

• y ∈ [0x , 1x ] ⇐⇒ [0y , 1y ] ⊆ [0x , 1x ],

• y ∈ Ax ⇐⇒ y ∈ [0x , 1x ] and 1x · y = y .

[0x , 1x ] = {a ∈ A : 0x ⩽ a ⩽ 1x} and Ax = {y ∈ A : 1x = 1y}.
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Canonical Representatives for the Ax Equivalence Classes

x ≡ y ⇐⇒ 1x = 1y is an equivalence relation.

Hence the equivalence classes {Ax : x ∈ A} partition A.

Lemma
Let A be a locally integral ipo-monoid, and p, a, x ∈ A.

• p ∈ A+ ⇐⇒ p = 1p.

• a ∈ ↓0 ⇐⇒ a = 0a.

• Ax ∩ A+ = {1x}.

• Ax ∩ ↓0 = {0x}.

It follows that the classes Ax are indexed by the elements of A+.
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The Integral Components of Locally Integral ipo-monoids

Theorem
Let A be a locally integral ipo-monoid. For every p in A+,

• Ap is closed under ∼,−, ·,
• Ap = (Ap,⩽, ·, 1p,∼,−) is an integral ipo-monoid,

• if (A,⩽) is a lattice then (Ap,⩽, 0p, 1p) is a bounded lattice.

The structures Ap are called the integral components of A.



Representation of the structure of a locally integral
ipo-monoid

Ap

↓0

A+

A1

A

1

0

0p

1p



Positive Elements are Central

Proposition

All positive elements of a locally integral ipo-monoid A are central,

for every p ∈ A+ and every x ∈ A, p · x = x · p.



Products Between Components

Lemma
If A is a locally integral, p, q ∈ A+,

x ∈ Ap and y ∈ Aq =⇒ x · y ∈ Apq.

Moreover, 1p · 1q = 1pq and 0p · 0q = 0pq.

The idempotence of all p, q ∈ A+ implies p · q = p ∨ q.

By duality, a, b ⩽ 0 implies a · b = a ∧ b.
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P lonka Sums

A family φij : Ai → Aj of homomorphisms is compatible if

• φjk ◦ φij = φik , if i ⩽ j ⩽ k ,

• φii is the identity on Ai .

If {φij : Ai → Aj : i ⩽ j} is indexed by the order of a
lower-bounded join-semilattice (I ,∨,⊥),
its P lonka sum is the algebra S with universe

⊎
i∈I Ai and

• a1 ∈ Ai1 , . . . , an ∈ Ain , σ n-ary, j = i1 ∨ · · · ∨ in,

σS(a1, . . . , an) = σAj (φi1j(a1), . . . , φinj(an)),

• if σ is constant, σS = cA⊥ .
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Compatible Maps Between Integral Components

For positive p ⩽ q, define φpq : Ap → Aq by φpq(x) = q · x .

Proposition

Let A be a locally integral ipo-monoid and p ⩽ q positive.

• φpq : Ap → Aq is a monoidal homomorphism,

• it respects arbitrary nonempty existing join, so it’s monotone,

• (A+, ·, 1) is a lower-bounded join semilattice.

• {φpq : p ⩽ q} is a compatible family of monoidal
homomorphisms.

(Notice: φpq(xy) = qxy = qqxy = qxqy = φpq(x)φpq(y).)
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Structural Characterization of Locally Integral ipo-monoids

Theorem
Let A be a locally integral ipo-monoid and {φpq : p ⩽ q} as before.

Then their P lonka sum
(⊎

Ap, ·S, 1S
)

is the monoidal reduct of A.

Define ∼Sx = ∼Apx and −Sx = −Apx , for every x ∈ Ap.

Define x ⩽S y ⇐⇒ x ·S ∼Sy = 0pq, for all x ∈ Ap, y ∈ Aq.

Then
(⊎

Ap,⩽S, ·S,∼S,−S
)

= A.

Moreover, if A is in InRL then all Ap are in InRL.

Furthermore, A is commutative if and only if all its components
are commutative
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A Generic Example with 4 Integral Components

1

q

r

p

0r

1r

0p

1p

0q

1q

01

11

A+

ArAp AqA1

A



Glueing Integral ipo-monoids

Let (D,∨, 1) be a lower-bounded join-semilattice;
Ap = (Ap,⩽p, ·p, 1p,∼p,−p) integral ipo-monoid, for every p ∈ D;
Φ = {φpq : Ap → Aq : p ⩽D q} compat. family of monoidal hom.

Define the structure:∫
Φ Ap =

(⊎
D Ap,⩽G , ·G , 1G ,∼G ,−G

)
where

(⊎
D Ap, ·G , 1G

)
is the P lonka sum of the family Φ

and for all p, q ∈ D, a ∈ Ap, and b ∈ Aq,

• ∼Ga = ∼pa and −Ga = −pa,

• a ⩽G b ⇐⇒ a ·G ∼Gb = 0p∨q.

∫
Φ Ap is the glueing of {Ap : p ∈ D} along the family Φ.
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A Sugihara Glueing of Copies of the Standard MV-chain
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Glueing  L3 into a Small IMTL-algebra
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Glueing of Integral ipo-monoids that is not an ipo-monoid
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The relation ⩽ of
∫
Φ Ap is not transitive.



Required Conditions for Glueing Integral ipo-monoids

(balanced): for all p, q ∈ D, a ∈ Ap, b ∈ Aq,

a ·G ∼Gb = 0p∨q ⇐⇒ −Gb ·G a = 0p∨q.

(zero): for all p ⩽D q, φpq(0p) = 0q ⇐⇒ p = q.

(tr): for all a, b, c ∈
⊎

Ap, if a ⩽G b and b ⩽G c , then a ⩽G c .



Main Glueing Result

Theorem
A structure A is a locally integral ipo-monoid if and only if there is

• a lower-bounded join-semilattice D,

• a family of integral ipo-monoids {Ap : p ∈ D}, and

• a compatible family Φ = {φpq : Ap → Aq : p ⩽D q} of
monoidal homomorphisms satisfying (bal), (zero), and (tr)

so that A =
∫
Φ Ap.



Glueing of infinitely many Boolean algebras that produces
an involutive semiring
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Two glueings, one being a semiring, the other no
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A Few Remarks and Questions

The condition (tr) can be replaced by more “local” condition.
• for all p ⩽D q, and a, b ∈ Ap, a ⩽p b =⇒ φpq(a) ⩽q φpq(b); (mon)

• for all p ⩽D q, p ⩽D r , and a ∈ Ap, ∼φpq(a) ⩽G φpr (∼a); (lax)

• for all p ∨ r ⩽D v , a ∈ Ap, and b ∈ Ar ,

φrv (∼b) ⩽v ∼φpv (a) =⇒ a ⩽G b. (∼lax)

A locally integral ipo-monoid A is idempotent if and only if all its
integral components are Boolean algebras.

Several properties are “local” (i.e., A satisfies them if and only if
all its components do): e.g., commutativity, local finiteness.

Under which conditions A is lattice-ordered?

Are locally integral ipo-monoids or InRLs decidable?
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