The Structure of Locally Integral Involutive PO-Monoids and Semirings

José Gil-Férez

Joint work with Peter Jipsen and Siddhartha Lodhia
RAMiCS 2023

3-6 April, Augsburg, Germany

Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for short, is a structure $(A, \leqslant, \cdot, 1, \sim,-)$ such that

- (A, \leqslant) is a poset,
- $(A, \cdot, 1)$ is a monoid,
$\bullet x \leqslant y \Longleftrightarrow x \cdot \sim y \leqslant 0 \Longleftrightarrow-y \cdot x \leqslant 0$ (ineg),
where $0=-1$

Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for short, is a structure $(A, \leqslant, \cdot, 1, \sim,-)$ such that

- (A, \leqslant) is a poset,
- $(A, \cdot, 1)$ is a monoid,
$\bullet x \leqslant y \Longleftrightarrow x \cdot \sim y \leqslant 0 \Longleftrightarrow-y \cdot x \leqslant 0$ (ineg),
where $0=-1=\sim 1$.

Involutive po-monoids

An involutive partially ordered monoid, or ipo-monoid for short, is a structure $(A, \leqslant, \cdot, 1, \sim,-)$ such that

- (A, \leqslant) is a poset,
- $(A, \cdot, 1)$ is a monoid,
$\cdot x \leqslant y \Longleftrightarrow x \cdot \sim y \leqslant 0 \Longleftrightarrow-y \cdot x \leqslant 0$ (ineg),
where $0=-1=\sim 1$.

Some examples: all groups (if \leqslant is $=$), all partially ordered groups (where $\sim x=-x=x^{-1}$), MV-algebras are ipo-monoids (\vee, \wedge are definable).

Some Properties of ipo-monoids

double negation: rotation:
antitonicity:

$$
\sim-x=x=-\sim x
$$

$$
x \leqslant y \Longleftrightarrow \sim y \leqslant \sim x \Longleftrightarrow-y \leqslant-x
$$

residuation (res):

$$
x \cdot y \leqslant z \Longleftrightarrow y \cdot \sim z \leqslant \sim x \Longleftrightarrow-z \cdot x \leqslant-y
$$

constants:

$$
x \cdot y \leqslant z \Longleftrightarrow x \leqslant-(y \cdot \sim z) \Longleftrightarrow y \leqslant \sim(-z \cdot x)
$$

$$
0=\sim 1, \quad \sim 0=1 \quad \text { and } \quad-0=1
$$

Some Properties of ipo-monoids

double negation rotation:
antitonicity:

$$
\sim-x=x=-\sim x
$$

residuation (res):

$$
x \cdot y \leqslant z \Longleftrightarrow y \cdot \sim z \leqslant \sim x \Longleftrightarrow-z \cdot x \leqslant-y
$$

$$
x \leqslant y \Longleftrightarrow \sim y \leqslant \sim x \Longleftrightarrow-y \leqslant-x
$$

constants:

$$
x \cdot y \leqslant z \Longleftrightarrow x \leqslant-(y \cdot \sim z) \Longleftrightarrow y \leqslant \sim(-z \cdot x)
$$

$$
0=\sim 1, \quad \sim 0=1 \quad \text { and } \quad-0=1
$$

(res) provides the residuals $z / y=-(y \cdot \sim z)$ and $x \backslash z=\sim(-z \cdot x)$.

$$
x \cdot y \leqslant z \quad \Longleftrightarrow \quad x \leqslant z / y \quad \Longleftrightarrow \quad y \leqslant x \backslash z
$$

Some Properties of ipo-monoids

double negation rotation:
antitonicity:

$$
\sim-x=x=-\sim x
$$

residuation (res):

$$
x \cdot y \leqslant z \Longleftrightarrow y \cdot \sim z \leqslant \sim x \Longleftrightarrow-z \cdot x \leqslant-y
$$

$$
x \leqslant y \Longleftrightarrow \sim y \leqslant \sim x \Longleftrightarrow-y \leqslant-x
$$

constants:

$$
x \cdot y \leqslant z \Longleftrightarrow x \leqslant-(y \cdot \sim z) \Longleftrightarrow y \leqslant \sim(-z \cdot x)
$$

$$
0=\sim 1, \quad \sim 0=1 \quad \text { and } \quad-0=1
$$

(res) provides the residuals $z / y=-(y \cdot \sim z)$ and $x \backslash z=\sim(-z \cdot x)$.

$$
x \cdot y \leqslant z \quad \Longleftrightarrow \quad x \leqslant z / y \quad \Longleftrightarrow \quad y \leqslant x \backslash z
$$

It follows that • is order-preserving in both arguments.

Some Properties of ipo-monoids

double negation rotation:
antitonicity:

$$
\sim-x=x=-\sim x
$$

$$
x \cdot y \leqslant z \Longleftrightarrow y \cdot \sim z \leqslant \sim x \Longleftrightarrow-z \cdot x \leqslant-y
$$

residuation (res):
$x \leqslant y \Longleftrightarrow \sim y \leqslant \sim x \Longleftrightarrow-y \leqslant-x$
constants:

$$
x \cdot y \leqslant z \Longleftrightarrow x \leqslant-(y \cdot \sim z) \Longleftrightarrow y \leqslant \sim(-z \cdot x)
$$

$0=\sim 1, \quad \sim 0=1 \quad$ and $\quad-0=1$.
(res) provides the residuals $z / y=-(y \cdot \sim z)$ and $x \backslash z=\sim(-z \cdot x)$.

$$
x \cdot y \leqslant z \quad \Longleftrightarrow \quad x \leqslant z / y \quad \Longleftrightarrow \quad y \leqslant x \backslash z
$$

It follows that • is order-preserving in both arguments.
Ipo-monoids satisfy: $x \backslash-y=\sim x / y$. (So Frobenius quantales are ipo-monoids.)

Locally Integral ipo-monoids

An ipo-monoid is integral if it satisfies the inequality $x \leqslant 1$.
(Since $\sim,-$ are dual order-isomorphisms, integrality implies $0 \leqslant x$.)

Locally Integral ipo-monoids

An ipo-monoid is integral if it satisfies the inequality $x \leqslant 1$.
(Since $\sim,-$ are dual order-isomorphisms, integrality implies $0 \leqslant x$.)

An ipo-monoid is locally integral if it satisfies

- $-x \cdot x=x \cdot \sim x$,
- multiplication is square-decreasing, i.e., $x^{2} \leqslant x$,
- $\downarrow 0$-idempotence, i.e., $x \leqslant 0 \Longrightarrow x^{2}=x$.

Locally Integral ipo-monoids

An ipo-monoid is integral if it satisfies the inequality $x \leqslant 1$.
(Since $\sim,-$ are dual order-isomorphisms, integrality implies $0 \leqslant x$.)

An ipo-monoid is locally integral if it satisfies

- $-x \cdot x=x \cdot \sim x$, (equivalently, $x \backslash x=x / x$),
- multiplication is square-decreasing, i.e., $x^{2} \leqslant x$,
- $\downarrow 0$-idempotence, i.e., $x \leqslant 0 \Longrightarrow x^{2}=x$.

Locally Integral ipo-monoids

An ipo-monoid is integral if it satisfies the inequality $x \leqslant 1$.
(Since $\sim,-$ are dual order-isomorphisms, integrality implies $0 \leqslant x$.)

An ipo-monoid is locally integral if it satisfies

- $-x \cdot x=x \cdot \sim x$, (equivalently, $x \backslash x=x / x$),
- multiplication is square-decreasing, i.e., $x^{2} \leqslant x$,
- $\downarrow 0$-idempotence, i.e., $x \leqslant 0 \Longrightarrow x^{2}=x$.

Proposition
Every integral ipo-monoid is locally integral.

Positive Elements

Let $A^{+}=\{x \in A \mid 1 \leqslant x\}$ be the positive cone of A.
Notice

$$
1 \cdot x=x \quad \Longrightarrow \quad 1 \cdot x \leqslant x \quad \Longrightarrow \quad 1 \leqslant x / x .
$$

Positive Elements

Let $A^{+}=\{x \in A \mid 1 \leqslant x\}$ be the positive cone of A.

Notice

$$
1 \cdot x=x \quad \Longrightarrow \quad 1 \cdot x \leqslant x \quad \Longrightarrow \quad 1 \leqslant x / x
$$

These terms are important enough to introduce special notation:

$$
1_{x}=x / x=x \backslash x \quad \text { and } \quad 0_{x}=\sim 1_{x}=-1_{x}
$$

We also have $1_{x}=\sim 0_{x}=-0_{x}$. Moreover, $1_{x}, 0_{x}$ are idempotent.

Properties of Locally Integral ipo-monoids

The following properties hold in every locally integral ipo-monoid A:

- $0_{\sim x}=0_{-x}=0_{x}$ and $1_{\sim x}=1_{-x}=1_{x}$,

Properties of Locally Integral ipo-monoids

The following properties hold in every locally integral ipo-monoid A:

- $0_{\sim x}=0_{-x}=0_{x}$ and $1_{\sim x}=1_{-x}=1_{x}$,
- $x \in\left[0_{x}, 1_{x}\right]$,

$$
\left[0_{x}, 1_{x}\right]=\left\{a \in A: 0_{x} \leqslant a \leqslant 1_{x}\right\}
$$

Properties of Locally Integral ipo-monoids

The following properties hold in every locally integral ipo-monoid A:

- $0_{\sim x}=0_{-x}=0_{x}$ and $1_{\sim x}=1_{-x}=1_{x}$,
- $x \in\left[0_{x}, 1_{x}\right]$,
- $1_{x} \cdot y=y \Longleftrightarrow 1_{x} \leqslant 1_{y}$,
$\left[0_{x}, 1_{x}\right]=\left\{a \in A: 0_{x} \leqslant a \leqslant 1_{x}\right\}$

Properties of Locally Integral ipo-monoids

The following properties hold in every locally integral ipo-monoid A:

- $0_{\sim x}=0_{-x}=0_{x}$ and $1_{\sim x}=1_{-x}=1_{x}$,
- $x \in\left[0_{x}, 1_{x}\right]$,
- $1_{x} \cdot y=y \Longleftrightarrow 1_{x} \leqslant 1_{y}$,
- $y \in\left[0_{x}, 1_{x}\right] \Longleftrightarrow\left[0_{y}, 1_{y}\right] \subseteq\left[0_{x}, 1_{x}\right]$,
$\left[0_{x}, 1_{x}\right]=\left\{a \in A: 0_{x} \leqslant a \leqslant 1_{x}\right\}$

Properties of Locally Integral ipo-monoids

The following properties hold in every locally integral ipo-monoid A:

- $0_{\sim x}=0_{-x}=0_{x}$ and $1_{\sim x}=1_{-x}=1_{x}$,
- $x \in\left[0_{x}, 1_{x}\right]$,
- $1_{x} \cdot y=y \Longleftrightarrow 1_{x} \leqslant 1_{y}$,
- $y \in\left[0_{x}, 1_{x}\right] \Longleftrightarrow\left[0_{y}, 1_{y}\right] \subseteq\left[0_{x}, 1_{x}\right]$,
- $y \in A_{x} \Longleftrightarrow y \in\left[0_{x}, 1_{x}\right]$ and $1_{x} \cdot y=y$.
$\left[0_{x}, 1_{x}\right]=\left\{a \in A: 0_{x} \leqslant a \leqslant 1_{x}\right\}$ and $A_{x}=\left\{y \in A: 1_{x}=1_{y}\right\}$.

Canonical Representatives for the A_{x} Equivalence Classes

$x \equiv y \Longleftrightarrow 1_{x}=1_{y}$ is an equivalence relation.

Hence the equivalence classes $\left\{A_{x}: x \in A\right\}$ partition A.

Canonical Representatives for the A_{x} Equivalence Classes

$x \equiv y \Longleftrightarrow 1_{x}=1_{y}$ is an equivalence relation.
Hence the equivalence classes $\left\{A_{x}: x \in A\right\}$ partition A.

Lemma
Let A be a locally integral ipo-monoid, and $p, a, x \in A$.

- $p \in A^{+} \Longleftrightarrow p=1_{p}$.
- $a \in \downarrow 0 \Longleftrightarrow a=0_{a}$.
- $A_{x} \cap A^{+}=\left\{1_{x}\right\}$.
- $A_{x} \cap \downarrow 0=\left\{0_{x}\right\}$.

Canonical Representatives for the A_{x} Equivalence Classes

$x \equiv y \Longleftrightarrow 1_{x}=1_{y}$ is an equivalence relation.
Hence the equivalence classes $\left\{A_{x}: x \in A\right\}$ partition A.

Lemma
Let \mathbf{A} be a locally integral ipo-monoid, and $p, a, x \in A$.

- $p \in A^{+} \Longleftrightarrow p=1_{p}$.
- $a \in \downarrow 0 \Longleftrightarrow a=0_{a}$.
- $A_{x} \cap A^{+}=\left\{1_{x}\right\}$.
- $A_{x} \cap \downarrow 0=\left\{0_{x}\right\}$.

It follows that the classes A_{x} are indexed by the elements of A^{+}.

The Integral Components of Locally Integral ipo-monoids

Theorem
Let A be a locally integral ipo-monoid. For every p in A^{+},

- A_{p} is closed under $\sim,-, \cdot$,
- $\mathbf{A}_{p}=\left(A_{p}, \leqslant, \cdot, 1_{p}, \sim,-\right)$ is an integral ipo-monoid,
- if (A, \leqslant) is a lattice then $\left(A_{p}, \leqslant, 0_{p}, 1_{p}\right)$ is a bounded lattice.

The structures \mathbf{A}_{p} are called the integral components of \mathbf{A}.

Representation of the structure of a locally integral ipo-monoid

Positive Elements are Central

Proposition

All positive elements of a locally integral ipo-monoid A are central, for every $p \in A^{+}$and every $x \in A, \quad p \cdot x=x \cdot p$.

Products Between Components

Lemma

If \mathbf{A} is a locally integral, $p, q \in A^{+}$,

$$
x \in A_{p} \text { and } y \in A_{q} \quad \Longrightarrow \quad x \cdot y \in A_{p q}
$$

Moreover, $1_{p} \cdot 1_{q}=1_{p q}$ and $0_{p} \cdot 0_{q}=0_{p q}$.

Products Between Components

Lemma

If \mathbf{A} is a locally integral, $p, q \in A^{+}$,

$$
x \in A_{p} \text { and } y \in A_{q} \quad \Longrightarrow \quad x \cdot y \in A_{p q}
$$

Moreover, $1_{p} \cdot 1_{q}=1_{p q}$ and $0_{p} \cdot 0_{q}=0_{p q}$.

The idempotence of all $p, q \in A^{+}$implies $p \cdot q=p \vee q$.

Products Between Components

Lemma

If \mathbf{A} is a locally integral, $p, q \in A^{+}$,

$$
x \in A_{p} \text { and } y \in A_{q} \quad \Longrightarrow \quad x \cdot y \in A_{p q}
$$

Moreover, $1_{p} \cdot 1_{q}=1_{p q}$ and $0_{p} \cdot 0_{q}=0_{p q}$.

The idempotence of all $p, q \in A^{+}$implies $p \cdot q=p \vee q$.

By duality, $a, b \leqslant 0$ implies $a \cdot b=a \wedge b$.

Płonka Sums

A family $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ of homomorphisms is compatible if

- $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k}$, if $i \leqslant j \leqslant k$,
- $\varphi_{i i}$ is the identity on \mathbf{A}_{i}.

Płonka Sums

A family $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ of homomorphisms is compatible if

- $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k}$, if $i \leqslant j \leqslant k$,
- $\varphi_{i i}$ is the identity on \mathbf{A}_{i}.

If $\left\{\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}: i \leqslant j\right\}$ is indexed by the order of a lower-bounded join-semilattice (I, \vee, \perp), its Płonka sum is the algebra \mathbf{S} with universe $\biguplus_{i \in I} A_{i}$ and

Płonka Sums

A family $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ of homomorphisms is compatible if

- $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k}$, if $i \leqslant j \leqslant k$,
- $\varphi_{i i}$ is the identity on \mathbf{A}_{i}.

If $\left\{\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}: i \leqslant j\right\}$ is indexed by the order of a lower-bounded join-semilattice (I, \vee, \perp), its Płonka sum is the algebra \mathbf{S} with universe $\biguplus_{i \in I} A_{i}$ and

- $a_{1} \in A_{i_{1}}, \ldots, a_{n} \in A_{i_{n}}, \sigma n$-ary, $j=i_{1} \vee \cdots \vee i_{n}$,

$$
\sigma^{\mathbf{S}}\left(a_{1}, \ldots, a_{n}\right)=\sigma^{\mathbf{A}_{j}}\left(\varphi_{i_{1} j}\left(a_{1}\right), \ldots, \varphi_{i_{n} j}\left(a_{n}\right)\right)
$$

Płonka Sums

A family $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ of homomorphisms is compatible if

- $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k}$, if $i \leqslant j \leqslant k$,
- $\varphi_{i i}$ is the identity on \mathbf{A}_{i}.

If $\left\{\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}: i \leqslant j\right\}$ is indexed by the order of a lower-bounded join-semilattice (I, \vee, \perp), its Płonka sum is the algebra \mathbf{S} with universe $\biguplus_{i \in I} A_{i}$ and

- $a_{1} \in A_{i_{1}}, \ldots, a_{n} \in A_{i_{n}}, \sigma n$-ary, $j=i_{1} \vee \cdots \vee i_{n}$,

$$
\sigma^{\mathbf{S}}\left(a_{1}, \ldots, a_{n}\right)=\sigma^{\mathbf{A}_{j}}\left(\varphi_{i_{1} j}\left(a_{1}\right), \ldots, \varphi_{i_{n} j}\left(a_{n}\right)\right)
$$

- if σ is constant, $\sigma^{\mathbf{S}}=c^{\mathbf{A}_{\perp}}$.

Compatible Maps Between Integral Components

For positive $p \leqslant q$, define $\varphi_{p q}: A_{p} \rightarrow A_{q}$ by $\varphi_{p q}(x)=q \cdot x$.

Proposition

Let A be a locally integral ipo-monoid and $p \leqslant q$ positive.

- $\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}$ is a monoidal homomorphism,
(Notice: $\left.\varphi_{p q}(x y)=q x y=q q x y=q x q y=\varphi_{p q}(x) \varphi_{p q}(y).\right)$

Compatible Maps Between Integral Components

For positive $p \leqslant q$, define $\varphi_{p q}: A_{p} \rightarrow A_{q}$ by $\varphi_{p q}(x)=q \cdot x$.

Proposition

Let A be a locally integral ipo-monoid and $p \leqslant q$ positive.

- $\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}$ is a monoidal homomorphism,
- it respects arbitrary nonempty existing join, so it's monotone,
(Notice: $\left.\varphi_{p q}(x y)=q x y=q q x y=q x q y=\varphi_{p q}(x) \varphi_{p q}(y).\right)$

Compatible Maps Between Integral Components

For positive $p \leqslant q$, define $\varphi_{p q}: A_{p} \rightarrow A_{q}$ by $\varphi_{p q}(x)=q \cdot x$.

Proposition

Let A be a locally integral ipo-monoid and $p \leqslant q$ positive.

- $\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}$ is a monoidal homomorphism,
- it respects arbitrary nonempty existing join, so it's monotone,
- $\left(A^{+}, \cdot, 1\right)$ is a lower-bounded join semilattice.
(Notice: $\left.\varphi_{p q}(x y)=q x y=q q x y=q x q y=\varphi_{p q}(x) \varphi_{p q}(y).\right)$

Compatible Maps Between Integral Components

For positive $p \leqslant q$, define $\varphi_{p q}: A_{p} \rightarrow A_{q}$ by $\varphi_{p q}(x)=q \cdot x$.

Proposition

Let A be a locally integral ipo-monoid and $p \leqslant q$ positive.

- $\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}$ is a monoidal homomorphism,
- it respects arbitrary nonempty existing join, so it's monotone,
- $\left(A^{+}, \cdot, 1\right)$ is a lower-bounded join semilattice.
- $\left\{\varphi_{p q}: p \leqslant q\right\}$ is a compatible family of monoidal homomorphisms.
(Notice: $\left.\varphi_{p q}(x y)=q x y=q q x y=q x q y=\varphi_{p q}(x) \varphi_{p q}(y).\right)$

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.
Define $\sim^{\mathbf{S}_{X}}=\sim^{\mathbf{A}_{\rho_{X}}}$ and $-\mathbf{S}_{X}=-\mathbf{A}_{\rho_{X}}$, for every $x \in A_{p}$.

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.
Define $\sim^{\mathbf{S}_{X}}=\sim^{\mathbf{A}_{\rho}}$ and $-\mathbf{S}_{X}=-\mathbf{A}_{\rho_{X}}$, for every $x \in A_{p}$.
Define $x \leqslant^{\mathbf{S}} y \Longleftrightarrow x \cdot{ }^{\mathbf{S}} \sim^{\mathbf{S}} y=0_{p q}, \quad$ for all $x \in A_{p}, y \in A_{q}$.

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.
Define $\sim^{\mathbf{S}_{x}}=\sim^{\mathbf{A}_{\rho}}$ and $-\mathbf{S}_{x}=-\mathbf{A}_{P_{X}}$, for every $x \in A_{p}$.
Define $x \leqslant^{\mathbf{S}} y \Longleftrightarrow x \cdot{ }^{\mathbf{S}} \sim^{\mathbf{S}} y=0_{p q}, \quad$ for all $x \in A_{p}, y \in A_{q}$.
Then $\left(\biguplus A_{p}, \leqslant^{\mathbf{s}}, \cdot^{\mathbf{s}}, \sim^{\mathbf{s}},-^{\mathbf{s}}\right)=\mathbf{A}$.

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.
Define $\sim^{\mathbf{S}_{X}}=\sim^{\mathbf{A}_{\rho}}$ and $-\mathbf{s}_{X}=-\mathbf{A}_{\rho_{X}}$, for every $x \in A_{p}$.
Define $x \leqslant^{\mathbf{S}} y \Longleftrightarrow x \cdot \mathbf{S} \sim^{\mathbf{S}} y=0_{p q}, \quad$ for all $x \in A_{p}, y \in A_{q}$.
Then $\left(\biguplus A_{p}, \leqslant^{\mathbf{s}},{ }^{\mathbf{s}}, \sim^{\mathbf{s}},-^{\mathbf{s}}\right)=\mathbf{A}$.
Moreover, if \mathbf{A} is in $\operatorname{In} R L$ then all \mathbf{A}_{p} are in $\operatorname{In} R L$.

Structural Characterization of Locally Integral ipo-monoids

Theorem
Let \mathbf{A} be a locally integral ipo-monoid and $\left\{\varphi_{p q}: p \leqslant q\right\}$ as before.
Then their Płonka sum $\left(\biguplus A_{p},{ }^{\mathbf{S}}, 1^{\mathbf{S}}\right)$ is the monoidal reduct of \mathbf{A}.
Define $\sim^{\mathbf{S}_{X}}=\sim^{\mathbf{A}_{\rho}}$ and $-\mathbf{S}_{X}=-\mathbf{A}_{\rho}$, for every $x \in A_{p}$.
Define $x \leqslant^{\mathbf{S}} y \Longleftrightarrow x \cdot{ }^{\mathbf{S}} \sim^{\mathbf{S}} y=0_{p q}, \quad$ for all $x \in A_{p}, y \in A_{q}$.
Then $\left(\biguplus A_{p}, \leqslant^{\mathbf{s}}, \cdot{ }^{\mathbf{s}}, \sim^{\mathbf{s}},-{ }^{\mathbf{s}}\right)=\mathbf{A}$.
Moreover, if \mathbf{A} is in $\operatorname{In} R L$ then all \mathbf{A}_{p} are in $\operatorname{In} R L$.
Furthermore, A is commutative if and only if all its components are commutative

A Generic Example with 4 Integral Components

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot p, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot p, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.
Define the structure:

$$
\int_{\Phi} \mathbf{A}_{p}=\left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G},-{ }^{G}\right)
$$

where $\left(\biguplus_{D} A_{p},{ }^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot p, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.
Define the structure:

$$
\int_{\Phi} \mathbf{A}_{p}=\left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G},-^{G}\right)
$$

where $\left(\biguplus_{D} A_{p},{ }^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ and for all $p, q \in D, a \in A_{p}$, and $b \in A_{q}$,

- $\sim^{G} a=\sim_{p} a$ and $-{ }^{G} a=-{ }_{p} a$,

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot p, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.
Define the structure:

$$
\int_{\Phi} \mathbf{A}_{p}=\left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G},-^{G}\right)
$$

where $\left(\biguplus_{D} A_{p},{ }^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ and for all $p, q \in D, a \in A_{p}$, and $b \in A_{q}$,

- $\sim^{G} a=\sim_{p} a$ and $-{ }^{G} a=-{ }_{p} a$,
- $a \leqslant^{G} b \Longleftrightarrow a \cdot{ }^{G} \sim^{G} b=0_{p \vee q}$.

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot p, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.
Define the structure:

$$
\int_{\Phi} \mathbf{A}_{p}=\left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G},-^{G}\right)
$$

where $\left(\biguplus_{D} A_{p},{ }^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ and for all $p, q \in D, a \in A_{p}$, and $b \in A_{q}$,

- $\sim^{G} a=\sim_{p} a$ and $-{ }^{G} a=-{ }_{p} a$,
- $a \leqslant^{G} b \Longleftrightarrow a \cdot{ }^{G} \sim^{G} b=0_{p \vee q}$.

Glueing Integral ipo-monoids

Let $(D, \vee, 1)$ be a lower-bounded join-semilattice;
$\mathbf{A}_{p}=\left(A_{p}, \leqslant_{p}, \cdot p, 1_{p}, \sim_{p},-_{p}\right)$ integral ipo-monoid, for every $p \in D$;
$\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{D} q\right\}$ compat. family of monoidal hom.
Define the structure:

$$
\int_{\Phi} \mathbf{A}_{p}=\left(\biguplus_{D} A_{p}, \leqslant^{G}, \cdot^{G}, 1^{G}, \sim^{G},-{ }^{G}\right)
$$

where $\left(\biguplus_{D} A_{p},{ }^{G}, 1^{G}\right)$ is the Płonka sum of the family Φ and for all $p, q \in D, a \in A_{p}$, and $b \in A_{q}$,

- $\sim^{G} a=\sim_{p} a$ and $-{ }^{G} a=-{ }_{p} a$,
- $a \leqslant^{G} b \Longleftrightarrow a \cdot{ }^{G} \sim^{G} b=0_{p \vee q}$.
$\int_{\Phi} \mathbf{A}_{p}$ is the glueing of $\left\{\mathbf{A}_{p}: p \in D\right\}$ along the family Φ.

A Sugihara Glueing of Copies of the Standard MV-chain

D

Φ

$$
\int_{\Phi} \mathbf{A}_{\rho}
$$

Glueing $Ł_{3}$ into a Small IMTL-algebra

Φ

$\int_{\Phi} \mathbf{A}_{\rho}$

Glueing of Integral ipo-monoids that is not an ipo-monoid

The relation \leqslant of $\int_{\Phi} \mathbf{A}_{p}$ is not transitive.

Required Conditions for Glueing Integral ipo-monoids

(balanced): for all $p, q \in D, a \in A_{p}, b \in A_{q}$,

$$
a \cdot{ }^{G} \sim^{G} b=0_{p \vee q} \Longleftrightarrow-{ }^{G} b \cdot{ }^{G} a=0_{p \vee q} .
$$

(zero): for all $p \leqslant^{D} q, \quad \varphi_{p q}\left(0_{p}\right)=0_{q} \Longleftrightarrow p=q$.
(tr): for all $a, b, c \in \biguplus A_{p}, \quad$ if $a \leqslant^{G} b$ and $b \leqslant^{G} c$, then $a \leqslant^{G} c$.

Main Glueing Result

Theorem
A structure \mathbf{A} is a locally integral ipo-monoid if and only if there is

- a lower-bounded join-semilattice D,
- a family of integral ipo-monoids $\left\{\mathbf{A}_{p}: p \in D\right\}$, and
- a compatible family $\Phi=\left\{\varphi_{p q}: \mathbf{A}_{p} \rightarrow \mathbf{A}_{q}: p \leqslant^{\mathrm{D}} q\right\}$ of monoidal homomorphisms satisfying (bal), (zero), and (tr)
so that $\mathbf{A}=\int_{\Phi} \mathbf{A}_{p}$.

Glueing of infinitely many Boolean algebras that produces an involutive semiring

Two glueings, one being a semiring, the other no

Two glueings, one being a semiring, the other no

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

- for all $p \leqslant^{\mathrm{D}} q$, and $a, b \in A_{p}, a \leqslant_{p} b \Longrightarrow \varphi_{p q}(a) \leqslant_{q} \varphi_{p q}(b) ; \quad$ (mon)
- for all $p \leqslant^{\mathrm{D}} q, p \leqslant^{\mathrm{D}} r$, and $a \in A_{p}, \sim \varphi_{p q}(a) \leqslant^{\mathrm{G}} \varphi_{p r}(\sim a)$;
- for all $p \vee r \leqslant^{\mathrm{D}} v, a \in A_{p}$, and $b \in A_{r}$,

$$
\begin{equation*}
\varphi_{r v}(\sim b) \leqslant v \sim \varphi_{p v}(a) \Longrightarrow a \leqslant^{\mathbf{G}} b \tag{lax}
\end{equation*}
$$

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

- for all $p \leqslant^{\mathrm{D}} q$, and $a, b \in A_{p}, a \leqslant_{p} b \Longrightarrow \varphi_{p q}(a) \leqslant_{q} \varphi_{p q}(b) ; \quad$ (mon)
- for all $p \leqslant^{\mathrm{D}} q, p \leqslant^{\mathrm{D}} r$, and $a \in A_{p}, \sim \varphi_{p q}(a) \leqslant^{\mathbf{G}} \varphi_{p r}(\sim a)$; (lax)
- for all $p \vee r \leqslant^{\mathrm{D}} v, a \in A_{p}$, and $b \in A_{r}$,

$$
\begin{equation*}
\varphi_{r v}(\sim b) \leqslant v \sim \varphi_{p v}(a) \Longrightarrow a \leqslant \leqslant^{G} b . \tag{lax}
\end{equation*}
$$

A locally integral ipo-monoid \mathbf{A} is idempotent if and only if all its integral components are Boolean algebras.

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

- for all $p \leqslant^{\mathrm{D}} q$, and $a, b \in A_{p}, a \leqslant_{p} b \Longrightarrow \varphi_{p q}(a) \leqslant_{q} \varphi_{p q}(b)$;
- for all $p \leqslant^{\mathrm{D}} q, p \leqslant^{\mathrm{D}} r$, and $a \in A_{p}, \sim \varphi_{p q}(a) \leqslant^{\mathrm{G}} \varphi_{p r}(\sim a)$;
- for all $p \vee r \leqslant^{\mathrm{D}} v, a \in A_{p}$, and $b \in A_{r}$,

$$
\begin{equation*}
\varphi_{r v}(\sim b) \leqslant v \sim \varphi_{p v}(a) \Longrightarrow a \leqslant^{\mathbf{G}} b \tag{lax}
\end{equation*}
$$

A locally integral ipo-monoid \mathbf{A} is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., A satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

- for all $p \leqslant^{\mathrm{D}} q$, and $a, b \in A_{p}, a \leqslant_{p} b \Longrightarrow \varphi_{p q}(a) \leqslant_{q} \varphi_{p q}(b)$;
- for all $p \leqslant^{\mathrm{D}} q, p \leqslant^{\mathrm{D}} r$, and $a \in A_{p}, \sim \varphi_{p q}(a) \leqslant^{\mathrm{G}} \varphi_{p r}(\sim a)$;
- for all $p \vee r \leqslant^{\mathrm{D}} v, a \in A_{p}$, and $b \in A_{r}$,

$$
\begin{equation*}
\varphi_{r v}(\sim b) \leqslant v \sim \varphi_{p v}(a) \Longrightarrow a \leqslant^{\mathbf{G}} b \tag{lax}
\end{equation*}
$$

A locally integral ipo-monoid \mathbf{A} is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., A satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

Under which conditions A is lattice-ordered?

A Few Remarks and Questions

The condition (tr) can be replaced by more "local" condition.

- for all $p \leqslant^{\mathrm{D}} q$, and $a, b \in A_{p}, a \leqslant_{p} b \Longrightarrow \varphi_{p q}(a) \leqslant_{q} \varphi_{p q}(b)$;
- for all $p \leqslant^{\mathrm{D}} q, p \leqslant^{\mathrm{D}} r$, and $a \in A_{p}, \sim \varphi_{p q}(a) \leqslant^{\mathrm{G}} \varphi_{p r}(\sim a)$;
- for all $p \vee r \leqslant^{\mathrm{D}} v, a \in A_{p}$, and $b \in A_{r}$,

$$
\begin{equation*}
\varphi_{r v}(\sim b) \leqslant v \sim \varphi_{p v}(a) \Longrightarrow a \leqslant^{\mathbf{G}} b \tag{lax}
\end{equation*}
$$

A locally integral ipo-monoid \mathbf{A} is idempotent if and only if all its integral components are Boolean algebras.

Several properties are "local" (i.e., A satisfies them if and only if all its components do): e.g., commutativity, local finiteness.

Under which conditions A is lattice-ordered?
Are locally integral ipo-monoids or InRLs decidable?

References

P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, 82, 57, 2021.

國
P. Jipsen, S. Vannucci, Injective and projective semimodules over involutive semirings, J. of Algebra and its Applications, (2021) https://doi.org/10.1142/S0219498822501821
T
W. McCune: Prover9 and Mace4.
https://www.cs.unm.edu/~mccune/prover9/, 2005-2010.

THANKS!

