Algebra and Logic in Granularity

John Stell

School of Computing, University of Leeds, UK

April 2023

(Cousty, Najman, Dias, Serra, 2013)

 $(a)\, original binary\, image$

(b) noisy binary image

(d) graph ASF

(c)usual ASF

 _			

Opening

Closing

Dilation

Erosion

 $\lceil R \rceil A = \{ x \in X \mid \forall b \ (x \ R \ b \to b \in A) \}$

Definition

Let Q be a quantale. A right Q-module is a sup-lattice M equipped with an action $\oplus : M \times Q \to M$ such that

1.
$$m \oplus 1 = m$$
,
2. $m \oplus (p \cdot q) = (m \oplus p) \oplus q$,
3. $m \oplus \bigvee A = \bigvee \{m \oplus a \mid a \in A\},$
4. $\bigvee B \oplus q = \bigvee \{b \oplus q \mid b \in B\}.$

Key example:

- \blacktriangleright M is 2^X
- $\blacktriangleright Q$ is $2^{X \times X}$
- is composition of relations

Given a right Q-module, $\oplus : M \times Q \to M$, fix $q \in Q$ and consider $m \mapsto m \oplus q$ from M to M. This is sup-preserving, so has a right adjoint: $q \oplus _: M \to M$.

Lemma

$$\ominus: Q \times M \to M \text{ satisfies}$$
1. $1 \ominus m = m$,
2. $(p \cdot q) \ominus m = p \ominus (q \ominus m)$,
3. $q \ominus \bigwedge B = \bigwedge \{q \ominus b \mid b \in B\}$,
4. $\bigvee A \ominus m = \bigwedge \{a \ominus m \mid a \in A\}.$

 $\ominus:Q\times M^{\operatorname{op}}\to M^{\operatorname{op}}$ is a left $Q\operatorname{-module}$

Let

- $\varphi: M \to M^{op}$ be a sup-lattice isomorphism, and
- $\blacktriangleright \oplus : M \times Q \to M$ a right Q-module with
- ▶ adjoint left module $\ominus: Q \times M^{op} \to M^{op}$

Define $\oplus^{\varphi}: Q \times M \to M$ by $q \oplus^{\varphi} m = \varphi(q \ominus \varphi^{-1}m)$

Define $\ominus^{\varphi}: M^{\mathsf{op}} \times Q \to M^{\mathsf{op}}$ by $m \ominus^{\varphi} q = \varphi^{-1}(\varphi m \oplus q)$

Then \oplus^{φ} is a left Q-module and \oplus^{φ} is its adjoint right module

Key example:

- φ is complementation on subsets
- \oplus^{φ} is dilation by converse

(Cousty, Najman, Dias, Serra, 2013)

 $(a)\, original binary\, image$

(b) noisy binary image

 $(d)\,{\rm graph}\,{\rm ASF}$

Operator	Applied to \mathbb{G}
$[\delta,\Delta]$	$(\delta(\mathbb{G}^{\bullet}), \Delta(\mathbb{G}^{\times}))$
$[\epsilon, \mathcal{E}]$	$(\epsilon(\mathbb{G}^{\bullet}), \mathcal{E}(\mathbb{G}^{\times}))$
$[\gamma,\Gamma]_1$	$(\gamma_1(\mathbb{G}^{\bullet}), \Gamma_1(\mathbb{G}^{\times}))$
$[\varphi,\Phi]_1$	$(\varphi_1(\mathbb{G}^{\bullet}), \Phi_1(\mathbb{G}^{\times}))$
$[\gamma,\Gamma]_{1/2}$	$(\gamma_{1/2}(\mathbb{G}^{\bullet}),\Gamma_{1/2}(\mathbb{G}^{\times}))$
$[\varphi,\Phi]_{1/2}$	$(\varphi_{1/2}(\mathbb{G}^{\bullet}), \Phi_{1/2}(\mathbb{G}^{\times}))$
$[\gamma,\Gamma]_{(2i+j)/2}$	$[\delta,\Delta]^i([\gamma,\Gamma]_{1/2})^j[\epsilon,\mathcal{E}]^i\mathbb{G}$
$[\varphi,\Phi]_{(2i+j)/2}$	$[\epsilon, \mathcal{E}]^i ([\varphi, \Phi]_{1/2})^j [\delta, \Delta]^i \mathbb{G}$

 $i \in \mathbb{N}$ and $j \in \{0, 1\}$.

filters

In mathematical morphology, given a complete lattice \mathcal{L} , the term 'filter' means any function $f: \mathcal{L} \to \mathcal{L}$ which is

- order-preserving, and
- idempotent.

Examples of filters include

- openings (which also satisfy $fx \leq x$) and
- closings (which also satisfy $x \leq fx$).

Consider sequences of filters $\alpha_1, \alpha_2, \ldots$ and β_1, β_2, \ldots where,

•
$$\alpha_1 \leq \beta_1$$
 and
• for $\lambda \leq \mu$, $\alpha_\mu \leq \alpha_\lambda$
• for $\lambda \leq \mu$, $\beta_\lambda \leq \beta_\mu$

Composites of the forms

$$\alpha_{\lambda}\beta_{\lambda}\alpha_{\lambda-1}\beta_{\lambda-1}\cdots\alpha_{1}\beta_{1},$$
$$\beta_{\lambda}\alpha_{\lambda}\beta_{\lambda-1}\alpha_{\lambda-1}\cdots\beta_{1}\alpha_{1}$$

are filters called 'alternating sequential filters'.

Example

α_i,β_i are opening and closing by structuring element of size i

Hypergraph $\mathbb H$ alias relation $J\subseteq \mathbb H^\times\times\mathbb H^\bullet$

 $\mathbb{H}^{\bullet} = \{x, y, x\}, \qquad \mathbb{H}^{\times} = \{a, b, c\},$

 $J = \{(a,x), (b,x), (b,y), (b,z), (c,y), (c,z)\}$

Arbitrary relations $R: \mathbb{H}_1 \rightarrow \mathbb{H}_2$ are unions of four:

$$R^{\bullet\bullet} \subseteq \mathbb{H}_1^{\bullet} \times \mathbb{H}_2^{\bullet}, \quad R^{\times\bullet} \subseteq \mathbb{H}_1^{\times} \times \mathbb{H}_2^{\bullet}, R^{\bullet\times} \subseteq \mathbb{H}_1^{\bullet} \times \mathbb{H}_2^{\times}, \quad R^{\times\times} \subseteq \mathbb{H}_1^{\times} \times \mathbb{H}_2^{\times}.$$

Write as matrix
$$R = \begin{bmatrix} R^{\bullet \bullet} & R^{\times \bullet} \\ R^{\bullet \times} & R^{\times \times} \end{bmatrix}$$
.

$$1_{\mathbb{H}} = \begin{bmatrix} I^{\bullet} & J \\ \varnothing & I^{\times} \end{bmatrix} \text{ is a partial order on } X = \mathbb{H}^{\bullet} \cup \mathbb{H}^{\times}$$

 $R: X^{\mathsf{op}} \times X \to 2$ monotone iff $1_{\mathbb{H}} R \ 1_{\mathbb{H}} = R$

 X^{op} represents the dual hypergraph \mathbb{H}^d

$\mathbb{T}:\mathbb{H}\to\mathbb{H}^d$

 $\mathbb{T} = \begin{bmatrix} \breve{J} & \varnothing \\ \varnothing & J \end{bmatrix}$

Operator	Applied to ${\mathbb G}$	Relational form
$[\delta,\Delta]$	$(\delta(\mathbb{G}^{\bullet}),\Delta(\mathbb{G}^{\times}))$	LĨTJ
$[\epsilon, \mathcal{E}]$	$(\epsilon(\mathbb{G}^{\bullet}), \mathcal{E}(\mathbb{G}^{\times}))$	┍╨╨┘
$[\gamma,\Gamma]_1$	$(\gamma_1(\mathbb{G}^{\bullet}),\Gamma_1(\mathbb{G}^{\times}))$	∟╨҃ ╥」 ſ ╨ ╖ [╶]
$[\varphi,\Phi]_1$	$(\varphi_1(\mathbb{G}^{\bullet}), \Phi_1(\mathbb{G}^{\times}))$	ſ╨╥┐∟╨╥」
$[\gamma,\Gamma]_{1/2}$	$(\gamma_{1/2}(\mathbb{G}^{\bullet}),\Gamma_{1/2}(\mathbb{G}^{\times}))$	$ \ \ \ \ \ \ \ \ \ \ \ \ $
$[\varphi,\Phi]_{1/2}$	$(\varphi_{1/2}(\mathbb{G}^{\bullet}), \Phi_{1/2}(\mathbb{G}^{\times}))$	
$[\gamma, \Gamma]_{(2i+j)/2}$	$[\delta,\Delta]^i ([\gamma,\Gamma]_{1/2})^j [\epsilon,\mathcal{E}]^i \mathbb{G}$	$\llcorner (\breve{\mathbb{T}}\mathbb{T})^{i}\breve{\mathbb{T}}^{j}\lrcorner \ulcorner (\breve{\mathbb{T}}\mathbb{T})^{i}\breve{\mathbb{T}}^{j}\urcorner$
$[\varphi,\Phi]_{(2i+j)/2}$	$[\epsilon, \mathcal{E}]^i ([\varphi, \Phi]_{1/2})^j [\delta, \Delta]^i \mathbb{G}$	$\lceil \mathbb{T}^{j}(\mathbb{T}\mathbb{T})^{i}\rceil_{\perp}\mathbb{T}^{j}(\mathbb{T}\mathbb{T})^{i}\rfloor$

In the last two rows $i \in \mathbb{N}$ and $j \in \{0, 1\}$.

Given poset (X, \leq) the monotone relations $X^{op} \times X \to 2$ form a quantale Q which acts on the lattice M of up-sets of X by dilation.

The lattice of up-sets has

$$M^{\mathsf{op}} \xrightarrow{\neg} M \xrightarrow{\neg} M^{\mathsf{op}}$$

To Modify the action using these we need lax modules, which preserve sups but only satisfy (in right / left case)

1.
$$m \leqslant m \oplus 1$$
,

- 2. $m \oplus (p \cdot q) \leqslant (m \oplus p) \oplus q$,
- 1. $m \leqslant 1 \oplus m$,
- 2. $(p \cdot q) \oplus m \leq p \oplus (q \oplus m)$,

Analogous to defining $\oplus^{\varphi}:Q\times M\to M$ by $q\oplus^{\varphi}m=\varphi(q\ominus\varphi^{-1}m)$

```
Don't get converse

R: (1_{\mathbb{H}})^{op} \times 1_{\mathbb{H}} \to 2 is monotone

iff

\breve{R}: 1_{\mathbb{H}} \times (1_{\mathbb{H}})^{op} \to 2 is monotone
```

but

$$\smile R = 1_{\mathbb{H}} \breve{R} \ 1_{\mathbb{H}}$$

Bi-Intuitionisitic Modal Logic from Monotone Relations

$$\begin{bmatrix} \bot \end{bmatrix} = \varnothing$$
$$\begin{bmatrix} \varphi \lor \psi \end{bmatrix} = \llbracket \varphi \rrbracket \cup \llbracket \psi \end{bmatrix}$$
$$\begin{bmatrix} \neg \varphi \end{bmatrix} = \lceil 1_{\mathbb{H}} \urcorner (-\llbracket \varphi \rrbracket)$$
$$\begin{bmatrix} \varphi \to \psi \end{bmatrix} = \lceil 1_{\mathbb{H}} \urcorner ((-\llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$$
$$\begin{bmatrix} \Box \varphi \end{bmatrix} = \lceil R \urcorner \llbracket \varphi \rrbracket$$
$$\begin{bmatrix} \varphi \rrbracket \end{bmatrix} = \lfloor R \lrcorner \llbracket \varphi \rrbracket$$

 $\begin{bmatrix} \top \end{bmatrix} = X \\ \llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\ \llbracket \neg \varphi \rrbracket = \llcorner 1_{\mathbb{H}^{\perp}} (-\llbracket \varphi \rrbracket) \\ \llbracket \varphi \succ \psi \rrbracket = \llcorner 1_{\mathbb{H}^{\perp}} (\llbracket \varphi \rrbracket \cap (-\llbracket \psi \rrbracket)) \\ \llbracket \Diamond \varphi \rrbracket = \llcorner \smile R_{\perp} \llbracket \varphi \rrbracket \\ \llbracket \varphi \rrbracket = \sqcap \bigtriangledown R \neg \llbracket \varphi \rrbracket$

 $\llbracket \diamondsuit \varphi \rrbracket = \llbracket \neg \Box \neg \varphi \rrbracket, \qquad \llbracket \blacksquare \varphi \rrbracket = \llbracket \neg \blacklozenge \neg \varphi \rrbracket$

Relations $X \times X \to 2$ correspond to elements of $[2^X, 2^X]_{\vee}$ For a complete lattice Ω relations $X \times X \to [\Omega, \Omega]_{\vee}$ correspond to elements of $[\Omega^X, \Omega^X]_{\vee}$

Given $q,q':X\times X\to [\Omega,\Omega]_\vee\text{, and }m:X\to \Omega\text{, define}$

$$(m \oplus q)y = \bigvee_{x \in X} q(x, y)m(x)$$
$$(q \cdot q')(x, z) = \bigvee_{y \in X} q'(y, z) \circ q(x, y)$$

gives a quantale and a quantale module in case of discrete set X

This extends to case of monotone relations when X is (X,\leqslant)

$$X^{\mathsf{op}} \times X \to [\Omega, \Omega]_{\vee}$$

Now Ω^X means monotone functions, which makes sense for graphs

41 / 47

Q-category

Assume a **quantale** $Q = (Q, \leq, \otimes, 1)$ where \otimes is commutative and has an identity 1 which is also the top element of the lattice.

(Think: truth values rather than relations)

Definition

A Q-category consists of a set X and a function $\mathcal{X} : X \times X \to Q$ such that for all $x, y, z \in X$,

- 1. $\mathbf{1} \leqslant \mathcal{X}(x, x)$, and
- 2. $\mathcal{X}(x,y) \otimes \mathcal{X}(y,z) \leq \mathcal{X}(x,z).$

Every Q-category has a **dual** defined by $\mathcal{X}^{op}(x, y) = \mathcal{X}(y, x)$.

Definition Given Q-categories $\mathcal{X}, \mathcal{Y},$ a Q-functor $\mathcal{F} : \mathcal{X} \to \mathcal{Y}$ is a function $F : X \to Y$ which for all $x_1, x_2 \in X$ satisfies $\mathcal{X}(x_1, x_2) \leq \mathcal{Y}(Fx_1, Fx_2).$ For each $q\in Q,$ the map $p\mapsto p\otimes q$ has a right adjoint $r\mapsto q\Rightarrow r$ so that

$$p \leqslant q \Rightarrow r \text{ iff } p \otimes q \leqslant r.$$

The binary operation $\Rightarrow: Q \times Q \rightarrow Q$ makes the quantale Q itself a Q-category with $Q(p,q) = p \Rightarrow q$.

Given Q-categories \mathcal{X}, \mathcal{Y} , the Q-category $\mathcal{X} \otimes \mathcal{Y}$ consists of the set $X \times Y$ equipped with the function $\mathcal{X} \otimes \mathcal{Y} : (X \times Y) \times (X \times Y) \rightarrow X \times Y$ where

 $(\mathcal{X} \otimes \mathcal{Y})((x_1, y_1), (x_2, y_2)) = \mathcal{X}(x_1, x_2) \otimes \mathcal{Y}(y_1, y_2).$

Definition A Q-distributor is a Q-functor, \mathcal{R} of the form

$$\mathcal{R}: \mathcal{X}^{op} \otimes \mathcal{Y} \to \mathcal{Q}.$$

The notation $\mathcal{R} : \mathcal{X} \longrightarrow \mathcal{Y}$ is used to indicate a \mathcal{Q} -distributor. Given \mathcal{Q} -distributors $\mathcal{R} : \mathcal{X} \longrightarrow \mathcal{Y}$ and $\mathcal{S} : \mathcal{Y} \longrightarrow \mathcal{Z}$ their composite

is defined as

$$(R;S)(x,z) = \bigvee_{y \in Y} \left(\mathcal{R}(x,y) \otimes \mathcal{S}(y,z) \right).$$

but we actually need $\mathcal{Q}\text{-functors}\ \mathcal{X}^{\mathsf{op}}\otimes\mathcal{X}\to [\mathcal{Q},\mathcal{Q}]_\vee$

. . .