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Definition
Let Q be a quantale. A right QQ-module is a sup-lattice M
equipped with an action ® : M x Q — M such that

1. m@1l=m,
2.md((p-q)=(mdp) Dy,

3. meaVA=\{mda|ac A},
4. \/B®q=\/{b®q|be B}.

Key example:
> M is 2X
[ Q is 2XxX

P - is composition of relations
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Given a right Q-module, & : M x Q — M,
fix ¢ € Q and consider m +— m @ q from M to M.
This is sup-preserving, so has a right adjoint: ¢& _: M — M.

Lemma
©:Q x M — M satisfies

l1em=m,
(p-g)em=pe(¢gom),
~qoANB=N{gob|be B},

. VAem=AN{aem|ac A}

>owon e

6 :Q x M° — M°P is a left Q-module
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Let

» o : M — M°P be a sup-lattice isomorphism, and

> ®: M xQ — M aright @-module with

» adjoint left module © : @ x M°P — M°P
Define @9 : Q x M — M by ¢ ¥ m = 0(q© ¢~ 'm)
Define ©% : M°P x Q — M° by m &% ¢ = ¢~ (om @ q)

Then &% is a left @-module and ©¥ is its adjoint right module
Key example:

P>  is complementation on subsets

> @¥ is dilation by converse
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(c)usual ASF (d)graph ASF
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Operator Applied to G

(6, A (6(G*),A(G™))

[€, €] (e(G*),E(G™))

[v, Tl (m(G*),T'1(G*))

[, @)1 (p1(G®), 21(G™))
(v, T]1/2 (711/2(G®),T'12(G™))
[o, @1 /2 (01/2(G®), @1,2(G™))
v, Tligyz 16 A ([v, Thy2) 6, ' G
[0, @] 2itj)2 6 EN" ([0 @lry2) [6, A G

ieNandje{0,1}.
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filters

In mathematical morphology, given a complete lattice L,

the term ‘filter’ means any function f : £ — £ which is

» order-preserving, and

> idempotent.

Examples of filters include
» openings (which also satisfy fx < z) and
» closings (which also satisfy = < fx).
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Consider sequences of filters a1, a9, ... and B1, 8o, ... where,

> Oé1<51 and
> for A<, ay
> for A<, B

Composites of the forms

arxBron_18x—1---a1B1,

BaaxBr—ion—1--- froq

are filters called ‘alternating sequential filters'.
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Example

«;, B; are opening and closing by structuring element of size 4

a)Baar—1Bx—1--- a1 Braafr—1on_1 - Prog
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Hypergraph H alias relation J C H* x H*

j/ g\?yi\*é

H* = {z,y,z}, H* = {a,b,c},

J = {(CL, SIZ), (bv (L‘), <b7 y)v (b7 Z)? (Ca y)v (Cv Z)}
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Arbitrary relations R : H; + Hs are unions of four:

R** CHS$ x H3, R** CH; x HS,
R** CH$ x Hy, R** CHj x HJ.

. . R.. RX.
Write as matrix R =
R.X RXX
I*J
g = is a partial order on X = H* U H*
g I*

R: X x X — 2 monotone iff 1y R 1y = R

X°P represents the dual hypergraph H¢
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Operator Applied to G Relational form

[0, A] (6(G®), A(GX)) LT TS

e, €] (e(G*),£(GX)) T T
[v.Th (m(G*),T1(G")) LT T T
[p, @)1 (£1(G*), ®1(GX)) TP LT T
(7, 12 (71/2(G*), Ty /2(G™)) LT T

[, @l1/2 (01/2(G®), @1,2(G™)) TT LTy

M D@isvgyz 16,A7 (T2 (6, G (T T) YL (T T) T
[0, @] irgy2 16 E ([0, @1 0) [0,A G TTY(TT) " TV(TT)

In the last two rows i € N and j € {0, 1}.
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Given poset (X, <) the monotone relations X°P x X — 2 form a
quantale @Q which acts on the lattice M of up-sets of X by dilation.

The lattice of up-sets has

—

MeP M MeP

—

To Modify the action using these we need lax modules, which
preserve sups but only satisfy (in right / left case)

1. m<mol,
me (p-q) < (m&p)dg,
m<1®m,
(P-g)em<p®(¢dm),

N

N =
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Analogous to
defining @Y : Q x M — M by ¢ ®% m = o(q S ¢~ 1m)

Don't get converse
R : (1g)° X 1y — 2 is monotone

iff

R:1g x (1g)°° — 2 is monotone

but y
U R=1g R 1g
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Bi-Intuitionisitic Modal Logic from Monotone Relations

[L] = @ [T] = X
[evyl = [elul¥] [eny]l = [elN[¥]
[=¢] = "1a"(=[v]) [Ze] = clma(=[v])
[p =4l = "' ([eD)U]D)  [e>¢] = clma([e] N (=[¥])
[Oe] = "R'[¥] [Oe] = v Ri[e]
[¢0] = LRu[¥] [We] = " RT[4]

[O@] =[70=¢],  [We]=[-¢"¢]

37/47






Relations X x X — 2 correspond to elements of [2%,2%],,

For a complete lattice 2

relations X x X — [Q, ]y correspond to elements of [2X, QX],
Given ¢,¢' : X x X — [Q,Q]y, and m : X — Q, define
(meqy=\/ qlz,y)m(z)

zeX

(q : q’)(:):,z) = \/ q’(y,z) © Q(xvy)

yeX

gives a quantale and a quantale module in case of discrete set X
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This extends to case of monotone relations when X is (X, <)
XPx X — [0y

Now QX means monotone functions, which makes sense for graphs
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O-category

Assume a quantale Q = (Q, <, ®, 1) where ® is commutative and
has an identity 1 which is also the top element of the lattice.

(Think: truth values rather than relations)

Definition
A Q-category consists of a set X and a function X : X x X — Q
such that for all x,y,z € X,

1. 1 < X(x,z), and

2. X(z,y) ® X(y,2) < X(z,2).

Every O-category has a dual defined by X°P(z,y) = X(y, x).
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Definition
Given Q-categories X, ),

a Q-functor F: X — )Y is
a function F : X — Y which for all z1,x9 € X satisfies

X(.I‘l,fvz) < y(F.%'l,FiL‘Q).
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Q as O-category

For each ¢ € @, the map p — p ® ¢ has a right adjoint r — ¢ = r
so that
pLqg=>riffpqg<<r

The binary operation =: ) X Q — @@ makes the quantale Q itself
a Q-category with Q(p,q) =p = q.
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X ® Y for Q-categories

Given Q-categories X', ), the O-category X ® Y consists of the set
X XY equipped with the function
XRY: (X XY)x (X xY)— X xY where

(X @ Y)((21,11), (22,92)) = X (21, 72) @ V(Y1,Y2)-
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Definition
A O-distributor is a Q-functor, R of the form

R:XPx)Y— Q.

The notation R : X —e+ Y is used to indicate a Q-distributor.

Given Q-distributors R : X —e> Y and S : ) —e> Z their composite
is defined as

(R;S)(z,2) = \/ (R(z.y) ©S(y,2)).

yey
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but we actually need Q-functors X°P @ X — [Q, QJy
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