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(Cousty, Najman, Dias, Serra, 2013)

an erosion and b1 and b2 are both a dilation and an opening. This
means, in particular, that a1 and a2 are idempotent extensive ero-
sions and that b1 and b2 are idempotent anti-extensive dilations.
The opening and the closing resulting from the adjunction (a3,b3)
are illustrated in Fig. 3d and h.

It is possible to associate with any lattice L, the lattice of all
increasing operators on L. In this context, two filters u1 and u2

on the lattice L are said ordered if, for any X 2 L; u1ðXÞ 6 u2ðXÞ
or if, for any X 2 L; u2ðXÞ 6 u1ðXÞ. A usual way to build a hierar-
chy of filters (i.e. an ordered family of filters) from an adjunct pair
(a,b) of erosion and dilation consists of building the dilations and
erosions obtained by iterating several times a and b. In general,
composing these iterated versions of a and b leads to hierarchies
of filters when the number of iterations increases. In the remaining
of the section, we follow this classical approach to build granulom-
etries and alternate sequential filters in the lattice G.

Let a be an operator acting on a lattice L and i be a non-negative
integer. The operator ai is defined by the identity on L when i = 0
and by a # ai$1 otherwise.

Definition 21. Let k 2 N. We define [c,C]k/2 (resp. [/,U]k/2)
by ½c;C&k=2 ¼ ½d;D&

i # ð½c;C&1=2Þ
j # ½!; E&i (resp. ½/;U&k=2 ¼ ½!; E&

i#
ð½/;U&1=2Þ

j # ½d;D&i), where i and j are respectively the quotient and
the remainder in the integer division of k by 2.

Theorem 22 (Granulometries). The families f½c;C&k=2jk 2 Ng and
f½/;U&k=2jk 2 Ng are granulometries:

1. for any k 2 N; ½c;C&k=2 (resp. [/,U]k/2) is an opening (resp. a
closing) on G;

2. for any two elements k;l 2 N such that k 6 l, we have [c,C]l/

2(X) v[c,C]k/2(X) and [/,U]k/2(X)v[/,U]l/2(X) for any X 2 G.

In order to prove Theorem 22, we use two intermediate results,
namely Lemmas 23 and 24.

Lemma 23. Let X be a graph. Then, the following statements hold
true:

1. c1(X() # c1/2(X().
2. C1(X)) # C1/2(X)).
3. [c,C]1(X)v[c, C]1/2(X)vX.

Proof.

1. Since C1/2 is an opening (Property 20.1), it is anti-extensive.
Therefore, we have C1/2 # !)(X() # !)(X(). Hence, we have d( -
# C1/2 # !)(X() # d( # !)(X() since d( is a dilation (Property 6),

Fig. 4. ASF illustration [see text].
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2X
⊕R

>

<
R⊖

2X 2X
⌞R⌟

>

<
⌜R⌝

2X

⌞R⌟A = {x ∈ X | ∃b (b R x ∧ b ∈ A)}

⌜R⌝A = {x ∈ X | ∀b (x R b → b ∈ A)}
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Definition
Let Q be a quantale. A right Q-module is a sup-lattice M
equipped with an action ⊕ :M ×Q→M such that

1. m⊕ 1 = m,

2. m⊕ (p · q) = (m⊕ p)⊕ q,

3. m⊕
∨
A =

∨
{m⊕ a | a ∈ A},

4.
∨
B ⊕ q =

∨
{b⊕ q | b ∈ B}.

Key example:

▶ M is 2X

▶ Q is 2X×X

▶ · is composition of relations

22 / 47



Given a right Q-module, ⊕ :M ×Q→M ,

fix q ∈ Q and consider m 7→ m⊕ q from M to M .

This is sup-preserving, so has a right adjoint: q ⊖ :M →M .

Lemma
⊖ : Q×M →M satisfies

1. 1⊖m = m,

2. (p · q)⊖m = p⊖ (q ⊖m),

3. q ⊖
∧
B =

∧
{q ⊖ b | b ∈ B},

4.
∨
A⊖m =

∧
{a⊖m | a ∈ A}.

⊖ : Q×Mop →Mop is a left Q-module
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Let

▶ φ :M →Mop be a sup-lattice isomorphism, and

▶ ⊕ :M ×Q→M a right Q-module with

▶ adjoint left module ⊖ : Q×Mop →Mop

Define ⊕φ : Q×M →M by q ⊕φ m = φ(q ⊖ φ−1m)

Define ⊖φ :Mop ×Q→Mop by m⊖φ q = φ−1(φm⊕ q)

Then ⊕φ is a left Q-module and ⊖φ is its adjoint right module

Key example:

▶ φ is complementation on subsets

▶ ⊕φ is dilation by converse
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(Cousty, Najman, Dias, Serra, 2013)
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Operator Applied to G
[δ,∆] (δ(G•),∆(G×))

[ϵ, E ] (ϵ(G•), E(G×))

[γ,Γ]1 (γ1(G•),Γ1(G×))

[φ,Φ]1 (φ1(G•),Φ1(G×))

[γ,Γ]1/2 (γ1/2(G•),Γ1/2(G×))

[φ,Φ]1/2 (φ1/2(G•),Φ1/2(G×))

[γ,Γ](2i+j)/2 [δ,∆]i ([γ,Γ]1/2)
j [ϵ, E ]iG

[φ,Φ](2i+j)/2 [ϵ, E ]i ([φ,Φ]1/2)j [δ,∆]iG

i ∈ N and j ∈ {0, 1}.
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filters

In mathematical morphology, given a complete lattice L,
the term ‘filter’ means any function f : L → L which is

▶ order-preserving, and

▶ idempotent.

Examples of filters include

▶ openings (which also satisfy fx ⩽ x) and

▶ closings (which also satisfy x ⩽ fx).
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Consider sequences of filters α1, α2, . . . and β1, β2, . . . where,

▶ α1 ⩽ β1 and

▶ for λ ⩽ µ, αµ ⩽ αλ

▶ for λ ⩽ µ, βλ ⩽ βµ

Composites of the forms

αλβλαλ−1βλ−1 · · ·α1β1,

βλαλβλ−1αλ−1 · · ·β1α1

are filters called ‘alternating sequential filters’.
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Example

αi, βi are opening and closing by structuring element of size i

αλβλαλ−1βλ−1 · · ·α1β1 βλαλβλ−1αλ−1 · · ·β1α1
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Hypergraph H alias relation J ⊆ H× ×H•

x y
z

a b c

x
y
za

b c

H• = {x, y, x}, H× = {a, b, c},

J = {(a, x), (b, x), (b, y), (b, z), (c, y), (c, z)}
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Arbitrary relations R : H1 →p H2 are unions of four:

R•• ⊆ H•
1 ×H•

2, R×• ⊆ H×
1 ×H•

2,

R•× ⊆ H•
1 ×H×

2 , R×× ⊆ H×
1 ×H×

2 .

Write as matrix R =

[
R•• R×•

R•× R××

]
.

1H =

[
I• J

∅ I×

]
is a partial order on X = H• ∪H×

R : Xop ×X → 2 monotone iff 1H R 1H = R

Xop represents the dual hypergraph Hd
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T : H →p Hd

T =

[
J̆ ∅
∅ J

]
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Operator Applied to G Relational form

[δ,∆] (δ(G•),∆(G×)) ⌞T̆ T⌟

[ϵ, E ] (ϵ(G•), E(G×)) ⌜T̆ T⌝

[γ,Γ]1 (γ1(G•),Γ1(G×)) ⌞T̆ T⌟ ⌜T̆ T⌝

[φ,Φ]1 (φ1(G•),Φ1(G×)) ⌜T̆ T⌝ ⌞T̆ T⌟

[γ,Γ]1/2 (γ1/2(G•),Γ1/2(G×)) ⌞T̆⌟ ⌜T̆⌝

[φ,Φ]1/2 (φ1/2(G•),Φ1/2(G×)) ⌜T⌝ ⌞T⌟

[γ,Γ](2i+j)/2 [δ,∆]i ([γ,Γ]1/2)
j [ϵ, E ]iG ⌞(T̆ T)iT̆j⌟ ⌜(T̆ T)iT̆j⌝

[φ,Φ](2i+j)/2 [ϵ, E ]i ([φ,Φ]1/2)j [δ,∆]iG ⌜Tj(T̆ T)i⌝ ⌞Tj(T̆ T)i⌟

In the last two rows i ∈ N and j ∈ {0, 1}.
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Given poset (X,⩽) the monotone relations Xop ×X → 2 form a
quantale Q which acts on the lattice M of up-sets of X by dilation.

The lattice of up-sets has

Mop

¬
>

< ¬ M
¬

>
<

¬
Mop

To Modify the action using these we need lax modules, which
preserve sups but only satisfy (in right / left case)

1. m ⩽ m⊕ 1,

2. m⊕ (p · q) ⩽ (m⊕ p)⊕ q,

1. m ⩽ 1⊕m,

2. (p · q)⊕m ⩽ p⊕ (q ⊕m),
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Analogous to
defining ⊕φ : Q×M →M by q ⊕φ m = φ(q ⊖ φ−1m)

Don’t get converse
R : (1H)

op × 1H → 2 is monotone

iff

R̆ : 1H × (1H)
op → 2 is monotone

but

↶

R = 1H R̆ 1H
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Bi-Intuitionisitic Modal Logic from Monotone Relations

[[⊥]] = ∅ [[⊤]] = X

[[φ ∨ ψ]] = [[φ]] ∪ [[ψ]] [[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]

[[¬φ]] = ⌜1H⌝ (−[[φ]]) [[
¬
φ]] = ⌞1H⌟ (−[[φ]])

[[φ→ ψ]] = ⌜1H⌝ ((−[[φ]]) ∪ [[ψ]]) [[φ � ψ]] = ⌞1H⌟ ([[φ]] ∩ (−[[ψ]]))

[[2φ]] = ⌜R⌝ [[φ]] [[3φ]] = ⌞ ↶
R⌟ [[φ]]

[[♦φ]] = ⌞R⌟ [[φ]] [[■φ]] = ⌜ ↶

R⌝ [[φ]]

[[♢φ]] = [[
¬
2¬φ]], [[■φ]] = [[¬♦

¬
φ]]
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Relations X ×X → 2 correspond to elements of [2X , 2X ]∨

For a complete lattice Ω

relations X ×X → [Ω,Ω]∨ correspond to elements of [ΩX ,ΩX ]∨

Given q, q′ : X ×X → [Ω,Ω]∨, and m : X → Ω, define

(m⊕ q)y =
∨
x∈X

q(x, y)m(x)

(q · q′)(x, z) =
∨
y∈X

q′(y, z) ◦ q(x, y)

gives a quantale and a quantale module in case of discrete set X
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This extends to case of monotone relations when X is (X,⩽)

Xop ×X → [Ω,Ω]∨

Now ΩX means monotone functions, which makes sense for graphs
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Q-category

Assume a quantale Q = (Q,⩽,⊗,1) where ⊗ is commutative and
has an identity 1 which is also the top element of the lattice.

(Think: truth values rather than relations)

Definition
A Q-category consists of a set X and a function X : X ×X → Q
such that for all x, y, z ∈ X,

1. 1 ⩽ X (x, x), and

2. X (x, y)⊗X (y, z) ⩽ X (x, z).

Every Q-category has a dual defined by X op(x, y) = X (y, x).
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Definition
Given Q-categories X ,Y,

a Q-functor F : X → Y is

a function F : X → Y which for all x1, x2 ∈ X satisfies

X (x1, x2) ⩽ Y(Fx1, Fx2).
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Q as Q-category

For each q ∈ Q, the map p 7→ p⊗ q has a right adjoint r 7→ q ⇒ r
so that

p ⩽ q ⇒ r iff p⊗ q ⩽ r.

The binary operation ⇒: Q×Q→ Q makes the quantale Q itself
a Q-category with Q(p, q) = p⇒ q.
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X ⊗ Y for Q-categories

Given Q-categories X ,Y, the Q-category X ⊗Y consists of the set
X × Y equipped with the function
X ⊗ Y : (X × Y )× (X × Y ) → X × Y where

(X ⊗ Y)((x1, y1), (x2, y2)) = X (x1, x2)⊗ Y(y1, y2).
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Definition
A Q-distributor is a Q-functor, R of the form

R : X op ⊗ Y → Q.

The notation R : X −→◦ Y is used to indicate a Q-distributor.

Given Q-distributors R : X −→◦ Y and S : Y −→◦ Z their composite
is defined as

(R ; S)(x, z) =
∨
y∈Y

(R(x, y)⊗ S(y, z)) .
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but we actually need Q-functors X op ⊗X → [Q,Q]∨

. . .

47 / 47


