# Algebra and Logic in Granularity 

John Stell

School of Computing, University of Leeds, UK

April 2023





## (Cousty, Najman, Dias, Serra, 2013)


(a) originalbinary image

(c) usual ASF

(b) noisy binary image

(d) graph ASF















$$
\begin{aligned}
& 2^{X} \stackrel{-\oplus R}{\leftarrow}{ }_{R \ominus-}^{X} 2^{X} \quad 2^{X} \stackrel{\llcorner R\lrcorner}{\leftarrow \vdash\urcorner} 2^{X} \\
& \llcorner R\lrcorner A=\{x \in X \mid \exists b(b R x \wedge b \in A)\} \\
& \ulcorner R\urcorner A=\{x \in X \mid \forall b(x R b \rightarrow b \in A)\}
\end{aligned}
$$

## Definition

Let $Q$ be a quantale. A right $Q$-module is a sup-lattice $M$ equipped with an action $\oplus: M \times Q \rightarrow M$ such that

1. $m \oplus 1=m$,
2. $m \oplus(p \cdot q)=(m \oplus p) \oplus q$,
3. $m \oplus \bigvee A=\bigvee\{m \oplus a \mid a \in A\}$,
4. $\bigvee B \oplus q=\bigvee\{b \oplus q \mid b \in B\}$.

Key example:

- $M$ is $2^{X}$
- $Q$ is $2^{X \times X}$
- . is composition of relations

Given a right $Q$-module, $\oplus: M \times Q \rightarrow M$, fix $q \in Q$ and consider $m \mapsto m \oplus q$ from $M$ to $M$.

This is sup-preserving, so has a right adjoint: $q \ominus_{-}: M \rightarrow M$.

## Lemma

$\ominus: Q \times M \rightarrow M$ satisfies

1. $1 \ominus m=m$,
2. $(p \cdot q) \ominus m=p \ominus(q \ominus m)$,
3. $q \ominus \bigwedge B=\bigwedge\{q \ominus b \mid b \in B\}$,
4. $\bigvee A \ominus m=\bigwedge\{a \ominus m \mid a \in A\}$.
$\ominus: Q \times M^{\mathrm{op}} \rightarrow M^{\mathrm{op}}$ is a left $Q$-module

Let

- $\varphi: M \rightarrow M^{\mathrm{op}}$ be a sup-lattice isomorphism, and
- $\oplus: M \times Q \rightarrow M$ a right $Q$-module with
- adjoint left module $\ominus: Q \times M^{\mathrm{op}} \rightarrow M^{\mathrm{op}}$

Define $\oplus^{\varphi}: Q \times M \rightarrow M$ by $q \oplus^{\varphi} m=\varphi\left(q \ominus \varphi^{-1} m\right)$
Define $\ominus^{\varphi}: M^{\mathrm{op}} \times Q \rightarrow M^{\mathrm{op}}$ by $m \ominus^{\varphi} q=\varphi^{-1}(\varphi m \oplus q)$
Then $\oplus^{\varphi}$ is a left $Q$-module and $\ominus^{\varphi}$ is its adjoint right module

Key example:

- $\varphi$ is complementation on subsets
- $\oplus^{\varphi}$ is dilation by converse


## (Cousty, Najman, Dias, Serra, 2013)


(a) originalbinary image

(c) usual ASF

(b) noisy binary image

(d) graph ASF


Operator $\quad$ Applied to $\mathbb{G}$

| $[\delta, \Delta]$ | $\left(\delta\left(\mathbb{G}^{\bullet}\right), \Delta\left(\mathbb{G}^{\times}\right)\right)$ |
| :--- | :--- |
| $[\epsilon, \mathcal{E}]$ | $\left(\epsilon\left(\mathbb{G}^{\bullet}\right), \mathcal{E}\left(\mathbb{G}^{\times}\right)\right)$ |

$[\gamma, \Gamma]_{1} \quad\left(\gamma_{1}\left(\mathbb{G}^{\bullet}\right), \Gamma_{1}\left(\mathbb{G}^{\times}\right)\right)$
$[\varphi, \Phi]_{1} \quad\left(\varphi_{1}\left(\mathbb{G}^{\bullet}\right), \Phi_{1}\left(\mathbb{G}^{\times}\right)\right)$
$[\gamma, \Gamma]_{1 / 2} \quad\left(\gamma_{1 / 2}\left(\mathbb{G}^{\bullet}\right), \Gamma_{1 / 2}\left(\mathbb{G}^{\times}\right)\right)$
$[\varphi, \Phi]_{1 / 2} \quad\left(\varphi_{1 / 2}\left(\mathbb{G}^{\bullet}\right), \Phi_{1 / 2}\left(\mathbb{G}^{\times}\right)\right)$
$[\gamma, \Gamma]_{(2 i+j) / 2} \quad[\delta, \Delta]^{i}\left([\gamma, \Gamma]_{1 / 2}\right)^{j}[\epsilon, \mathcal{E}]^{i} \mathbb{G}$
$[\varphi, \Phi]_{(2 i+j) / 2} \quad[\epsilon, \mathcal{E}]^{i}\left([\varphi, \Phi]_{1 / 2}\right)^{j}[\delta, \Delta]^{i} \mathbb{G}$
$i \in \mathbb{N}$ and $j \in\{0,1\}$.

## filters

In mathematical morphology, given a complete lattice $\mathcal{L}$, the term 'filter' means any function $f: \mathcal{L} \rightarrow \mathcal{L}$ which is

- order-preserving, and
- idempotent.

Examples of filters include

- openings (which also satisfy $f x \leqslant x$ ) and
- closings (which also satisfy $x \leqslant f x$ ).

Consider sequences of filters $\alpha_{1}, \alpha_{2}, \ldots$ and $\beta_{1}, \beta_{2}, \ldots$ where,

- $\alpha_{1} \leqslant \beta_{1}$ and
- for $\lambda \leqslant \mu, \quad \alpha_{\mu} \leqslant \alpha_{\lambda}$
- for $\lambda \leqslant \mu, \quad \beta_{\lambda} \leqslant \beta_{\mu}$

Composites of the forms

$$
\begin{gathered}
\alpha_{\lambda} \beta_{\lambda} \alpha_{\lambda-1} \beta_{\lambda-1} \cdots \alpha_{1} \beta_{1} \\
\beta_{\lambda} \alpha_{\lambda} \beta_{\lambda-1} \alpha_{\lambda-1} \cdots \beta_{1} \alpha_{1}
\end{gathered}
$$

are filters called 'alternating sequential filters'.

## Example

$\alpha_{i}, \beta_{i}$ are opening and closing by structuring element of size $i$


Hypergraph $\mathbb{H}$ alias relation $J \subseteq \mathbb{H}^{\times} \times \mathbb{H}^{\bullet}$


$$
\begin{gathered}
\mathbb{H}^{\bullet}=\{x, y, x\}, \quad \mathbb{H}^{\times}=\{a, b, c\} \\
J=\{(a, x),(b, x),(b, y),(b, z),(c, y),(c, z)\}
\end{gathered}
$$

Arbitrary relations $R: \mathbb{H}_{1} \rightarrow \mathbb{H}_{2}$ are unions of four:

$$
\begin{array}{ll}
R^{\bullet \bullet} \subseteq \mathbb{H}_{1}^{\bullet} \times \mathbb{H}_{2}^{\bullet}, & R^{\times \bullet} \subseteq \mathbb{H}_{1}^{\times} \times \mathbb{H}_{2}^{\bullet} \\
R^{\bullet \times} \subseteq \mathbb{H}_{1}^{\bullet} \times \mathbb{H}_{2}^{\times}, & R^{\times \times} \subseteq \mathbb{H}_{1}^{\times} \times \mathbb{H}_{2}^{\times}
\end{array}
$$

Write as matrix $R=\left[\begin{array}{cc}R^{\bullet \bullet} & R^{\times \bullet} \\ R^{\bullet \times} & R^{\times \times}\end{array}\right]$.
$1_{\mathbb{H}}=\left[\begin{array}{cc}I^{\bullet} & J \\ \varnothing & I^{\times}\end{array}\right]$is a partial order on $X=\mathbb{H} \bullet \cup \mathbb{H}^{\times}$
$R: X^{\mathrm{Op}} \times X \rightarrow 2$ monotone iff $1_{\mathbb{H}} R 1_{\mathbb{H}}=R$
$X^{\mathrm{op}}$ represents the dual hypergraph $\mathbb{H}^{d}$

$$
\begin{aligned}
& \mathbb{T}: \mathbb{H} \rightarrow \mathbb{H}^{d} \\
& \mathbb{T}=\left[\begin{array}{ll}
\breve{J} & \varnothing \\
\varnothing & J
\end{array}\right]
\end{aligned}
$$

| Operator | Applied to $\mathbb{G}$ | Relational form |
| :--- | :--- | :--- |
| $[\delta, \Delta]$ | $\left(\delta\left(\mathbb{G}^{\bullet}\right), \Delta\left(\mathbb{G}^{\times}\right)\right)$ | $\llcorner\breve{\mathbb{T}} \mathbb{T}\lrcorner$ |
| $[\epsilon, \mathcal{E}]$ | $\left(\epsilon\left(\mathbb{G}^{\bullet}\right), \mathcal{E}\left(\mathbb{G}^{\times}\right)\right)$ | $\ulcorner\breve{\mathbb{T}} \mathbb{T}\urcorner$ |
| $[\gamma, \Gamma]_{1}$ | $\left(\gamma_{1}\left(\mathbb{G}^{\bullet}\right), \Gamma_{1}\left(\mathbb{G}^{\times}\right)\right)$ | $\llcorner\breve{\mathbb{T}} \mathbb{T}\lrcorner\ulcorner\breve{\mathbb{T}} \mathbb{T}\urcorner$ |
| $[\varphi, \Phi]_{1}$ | $\left(\varphi_{1}\left(\mathbb{G}^{\bullet}\right), \Phi_{1}\left(\mathbb{G}^{\times}\right)\right)$ | $\ulcorner\breve{\mathbb{T}} \mathbb{T}\urcorner\llcorner\breve{\mathbb{T}} \mathbb{T}\lrcorner$ |
| $[\gamma, \Gamma]_{1 / 2}$ | $\left(\gamma_{1 / 2}\left(\mathbb{G}^{\bullet}\right), \Gamma_{1 / 2}\left(\mathbb{G}^{\times}\right)\right)$ | $\llcorner\breve{\mathbb{T}}\lrcorner\ulcorner\breve{\mathbb{T}}\urcorner$ |
| $[\varphi, \Phi]_{1 / 2}$ | $\left(\varphi_{1 / 2}\left(\mathbb{G}^{\bullet}\right), \Phi_{1 / 2}\left(\mathbb{G}^{\times}\right)\right)$ | $\ulcorner\mathbb{T}\urcorner\llcorner\mathbb{T}\lrcorner$ |
| $[\gamma, \Gamma]_{(2 i+j) / 2}$ | $[\delta, \Delta]^{i}\left([\gamma, \Gamma]_{1 / 2}\right)^{j}[\epsilon, \mathcal{E}]^{i} \mathbb{G}$ | $\left\llcorner(\breve{\mathbb{T}} \mathbb{T})^{4} \mathbb{T}^{j}\right\lrcorner\left\ulcorner(\breve{\mathbb{T}} \mathbb{T})^{i} \mathbb{T}^{j}\right\urcorner$ |
| $[\varphi, \Phi]_{(2 i+j) / 2}$ | $[\epsilon, \mathcal{E}]^{i}\left([\varphi, \Phi]_{1 / 2}\right)^{j}[\delta, \Delta]^{i} \mathbb{G}$ | $\left\ulcorner\mathbb{T}^{j}(\breve{\mathbb{T}} \mathbb{T})^{i}\left\llcorner\left\llcorner\mathbb{T}^{j}(\breve{\mathbb{T}} \mathbb{T})^{i}\right\lrcorner\right.\right.$ |

In the last two rows $i \in \mathbb{N}$ and $j \in\{0,1\}$.

Given poset $(X, \leqslant)$ the monotone relations $X^{\mathrm{op}} \times X \rightarrow 2$ form a quantale $Q$ which acts on the lattice $M$ of up-sets of $X$ by dilation.

The lattice of up-sets has


To Modify the action using these we need lax modules, which preserve sups but only satisfy (in right / left case)

1. $m \leqslant m \oplus 1$,
2. $m \oplus(p \cdot q) \leqslant(m \oplus p) \oplus q$,
3. $m \leqslant 1 \oplus m$,
4. $(p \cdot q) \oplus m \leqslant p \oplus(q \oplus m)$,

Analogous to
defining $\oplus^{\varphi}: Q \times M \rightarrow M$ by $q \oplus^{\varphi} m=\varphi\left(q \ominus \varphi^{-1} m\right)$

Don't get converse
$R:\left(1_{\mathbb{H}}\right)^{\mathrm{op}} \times 1_{\mathbb{H}} \rightarrow 2$ is monotone iff
$\breve{R}: 1_{\mathbb{H}} \times\left(1_{\mathbb{H}}\right)^{\text {op }} \rightarrow 2$ is monotone
but

$$
\checkmark R=1_{\mathbb{H}} \breve{R} 1_{\mathbb{H}}
$$

Bi-Intuitionisitic Modal Logic from Monotone Relations

$$
\begin{aligned}
\llbracket \perp \rrbracket & =\varnothing \\
\llbracket \varphi \vee \psi \rrbracket & =\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \\
\llbracket \neg \varphi \rrbracket & =\left\ulcorner 1_{\mathbb{H}}\right\urcorner(-\llbracket \varphi \rrbracket) \\
\llbracket \varphi \rightarrow \psi \rrbracket & =\left\ulcorner 1_{\mathbb{H}\urcorner}\right\urcorner((-\llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket) \\
\llbracket \square \varphi \rrbracket & =\ulcorner R\urcorner \llbracket \varphi \rrbracket \\
\llbracket \varphi \rrbracket & =\llcorner R\lrcorner \llbracket \varphi \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
\llbracket \top \rrbracket & =X \\
\llbracket \varphi \wedge \psi \rrbracket & =\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\
\llbracket\lrcorner \varphi \rrbracket & =\left\llcorner 1_{\mathbb{H}\lrcorner}\right\lrcorner(-\llbracket \varphi \rrbracket) \\
\llbracket \varphi \succ \psi \rrbracket & =\left\llcorner 1_{\mathbb{H}\lrcorner(\llbracket \varphi \rrbracket \cap(-\llbracket \psi \rrbracket))}(\llbracket \varphi)\right. \\
\llbracket \diamond \varphi \rrbracket & =\llcorner\cup R\lrcorner \llbracket \varphi \rrbracket \\
\llbracket \llbracket \varphi \rrbracket & =\ulcorner\cup R\urcorner \llbracket \varphi \rrbracket
\end{aligned}
$$

$$
\llbracket \diamond \varphi \rrbracket=\llbracket \neg \square \neg \varphi \rrbracket, \quad \llbracket \square \varphi \rrbracket=\llbracket \neg \neg-\varphi \rrbracket
$$



Relations $X \times X \rightarrow 2$ correspond to elements of $\left[2^{X}, 2^{X}\right]_{\vee}$
For a complete lattice $\Omega$
relations $X \times X \rightarrow[\Omega, \Omega]_{\vee}$ correspond to elements of $\left[\Omega^{X}, \Omega^{X}\right]_{\vee}$

Given $q, q^{\prime}: X \times X \rightarrow[\Omega, \Omega]_{\vee}$, and $m: X \rightarrow \Omega$, define

$$
\begin{aligned}
(m \oplus q) y & =\bigvee_{x \in X} q(x, y) m(x) \\
\left(q \cdot q^{\prime}\right)(x, z) & =\bigvee_{y \in X} q^{\prime}(y, z) \circ q(x, y)
\end{aligned}
$$

gives a quantale and a quantale module in case of discrete set $X$

This extends to case of monotone relations when $X$ is $(X, \leqslant)$

$$
X^{\mathrm{op}} \times X \rightarrow[\Omega, \Omega]_{\vee}
$$

Now $\Omega^{X}$ means monotone functions, which makes sense for graphs

## $\mathcal{Q}$-category

Assume a quantale $\mathcal{Q}=(Q, \leqslant, \otimes, \mathbf{1})$ where $\otimes$ is commutative and has an identity $\mathbf{1}$ which is also the top element of the lattice.
(Think: truth values rather than relations)

## Definition

A $\mathcal{Q}$-category consists of a set $X$ and a function $\mathcal{X}: X \times X \rightarrow Q$ such that for all $x, y, z \in X$,

$$
\begin{aligned}
& \text { 1. } \mathbf{1} \leqslant \mathcal{X}(x, x) \text {, and } \\
& \text { 2. } \mathcal{X}(x, y) \otimes \mathcal{X}(y, z) \leqslant \mathcal{X}(x, z) .
\end{aligned}
$$

Every $\mathcal{Q}$-category has a dual defined by $\mathcal{X}^{\mathrm{op}}(x, y)=\mathcal{X}(y, x)$.

## Definition

Given $\mathcal{Q}$-categories $\mathcal{X}, \mathcal{Y}$,
a $\mathcal{Q}$-functor $\mathcal{F}: \mathcal{X} \rightarrow \mathcal{Y}$ is
a function $F: X \rightarrow Y$ which for all $x_{1}, x_{2} \in X$ satisfies

$$
\mathcal{X}\left(x_{1}, x_{2}\right) \leqslant \mathcal{Y}\left(F x_{1}, F x_{2}\right)
$$

## $\mathcal{Q}$ as $\mathcal{Q}$-category

For each $q \in Q$, the map $p \mapsto p \otimes q$ has a right adjoint $r \mapsto q \Rightarrow r$ so that

$$
p \leqslant q \Rightarrow r \text { iff } p \otimes q \leqslant r .
$$

The binary operation $\Rightarrow: Q \times Q \rightarrow Q$ makes the quantale $\mathcal{Q}$ itself a $\mathcal{Q}$-category with $\mathcal{Q}(p, q)=p \Rightarrow q$.

## $\mathcal{X} \otimes \mathcal{Y}$ for $\mathcal{Q}$-categories

Given $\mathcal{Q}$-categories $\mathcal{X}, \mathcal{Y}$, the $\mathcal{Q}$-category $\mathcal{X} \otimes \mathcal{Y}$ consists of the set $X \times Y$ equipped with the function $\mathcal{X} \otimes \mathcal{Y}:(X \times Y) \times(X \times Y) \rightarrow X \times Y$ where

$$
(\mathcal{X} \otimes \mathcal{Y})\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\mathcal{X}\left(x_{1}, x_{2}\right) \otimes \mathcal{Y}\left(y_{1}, y_{2}\right)
$$

## Definition

A $\mathcal{Q}$-distributor is a $\mathcal{Q}$-functor, $\mathcal{R}$ of the form

$$
\mathcal{R}: \mathcal{X}^{o p} \otimes \mathcal{Y} \rightarrow \mathcal{Q}
$$

The notation $\mathcal{R}: \mathcal{X} \longrightarrow \mathcal{Y}$ is used to indicate a $\mathcal{Q}$-distributor.
Given $\mathcal{Q}$-distributors $\mathcal{R}: \mathcal{X} \longrightarrow \mathcal{Y}$ and $\mathcal{S}: \mathcal{Y} \longrightarrow \mathcal{Z}$ their composite is defined as

$$
(R ; S)(x, z)=\bigvee_{y \in Y}(\mathcal{R}(x, y) \otimes \mathcal{S}(y, z))
$$

but we actually need $\mathcal{Q}$-functors $\mathcal{X}^{\mathrm{op}} \otimes \mathcal{X} \rightarrow[\mathcal{Q}, \mathcal{Q}]_{\vee}$

