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Content

• Algebraization of formal language theory: categories DA of
A-dioids having quotients (coequalizers) and tensor products.

• The polycyclic R-dioid C ′2 = R∆∗2/ρ2 of 2 bracket pairs

• Automata 〈S ,A,F 〉 over K ⊗R C ′2 with SA∗F ∈ K ⊗R C ′2
• First Normal form for SA∗F with A = (U + X + V ):

(U + X + V )∗ = (NV )∗N(UN)∗ for N = µy .(UyV + X )∗

• Reduced normal form for SA∗F ∈ ZC ′
2
(K ⊗R C ′2): SNF

• Regular combinations of normal forms
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Algebraization of Formal Language Theory

M the category of monoids (M, ·, 1) and homomorphisms,
D the category of dioids = idempotent semirings (D,+, ·, 0, 1)

and semiring homomorphisms.

A monadic opertor A (Hopkins 2008) is a functor A : M→ D that
satisfies, for all monoids M,N and homomorphisms f : M → N,

A0 AM is a set of subsets of M,

A1 AM contains each finite subset of M (hence ∅, {1})
A2 AM is closed under product (hence a monoid),

A3 AM is closed under union of sets from AAM (hence a dioid),

A4 Af := λU {f (m) | m ∈ U} : AM → AN is a homomorphism.

Theorem (Hopkins 2008)

F(finite),R(regular), C(context-free), T (r.e.),P(all sets) are
monadic operators. [S(context-sensitive) does not satisfy A4]
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The category DA ⊆ D of A-dioids

An A-dioid is a partially ordered monoid M = (M, ·, 1,≤) which is

• A-complete: every U ∈ AM has a supremum
∑

U ∈ M, and

• A-distributive: for all U,V ∈ AM,
∑

(UV ) = (
∑

U)(
∑

V ).

equivalently: for all a, b ∈ M,U ∈ AM : a(
∑

U)b =
∑

aUb.

Write A-dioids as dioids D = (M,+, ·, 0, 1), with 0,+ given by
∑

,
and AD for A(M, ·, 1).

For A-dioids D,D ′, an A-morphism f : D → D ′ is a monotone
homomorphism which is A-continuous, i.e. which satisfies

for all U ∈ AD: f (
∑

U) =
∑
′(Af )(U).

Let DA be the category of A-dioids and A-morphisms. (DF = D.)
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DA has quotients D/≡ by A-congruences, and tensor products.

Theorem (MH,HL 2018)

In DA, a tensor product >1 : D1 → D1⊗AD2 ← D2 : >2 of
A-dioids D1,D2 exists, and it consists of

• D1⊗AD2 := A(M1 ×M2)/≡, where Mi is the multiplicative
monoid of Di and ≡ is the leastA-congruence s.th.

{(
∑

A,
∑

B)} ≡ A× B, for all A ∈ AM1,B ∈ AM2,

• commuting morphisms >1,>2 given by

>1(a) := {(a, 1)}/≡, >2(b) = {(1, b)}/≡, for a ∈ D1, b ∈ D2.

The induced map of f : D1 → D ← D2 : g is

hf ,g (U/≡) :=
∑
{f (a)g(b) | (a, b) ∈ U}, U ∈ A(M1 ×M2).

Write a⊗ b := {(a, b)}/≡, [U] := U/≡ =
∑
{a⊗ b | (a, b) ∈ U}.
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Theorem (Hopkins 2008, L./Hopkins 2018)

• DR is the category of ∗-continuous Kleene algebras.

• DC is the category of µ-continuous Chomsky algebras.

Kleene-Algebra (Kozen 1990): right- and left-linearly closed dioid

x ≥ ax + b and x ≥ xa + b have least solutions a∗b resp.
ba∗, for all values a, b.

∗-continuity: a · c∗ · b =
∑
{a · cn · b | n ∈ N}, for all a, b, c ∈ M.

Chomsky-Algebra (Grathwohl e.a. 2015): algebraically closed dioid

every polynomial system x1 ≥ p1(x̄ , ȳ), . . . , xn ≥ pn(x̄ , ȳ)
has a least solution in x̄ = x1, . . . xn, for each value of ȳ .

µ-continuity: a · µxp · b =
∑
{a · pn(0) · b | n ∈ N}, all p ∈ M[x ].
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There is an adjunction between DR and DC,

QCR : DR� DC : QRC ,

where QCR(K ) is the C-completion of K , i.e. a C-dioid K with an
R-morphism η : K → K such that any R-morphism f : K → C to
a C-dioid C extends uniquely to a C-morphism f̄ : K → C , i.e.
f = f̄ ◦ η:

C

K
η

-

f

-

K

f̄

6
................

Prop. For monoids M, the C-completion of RM is CM, with

f̄ (L) =
∑
{f ({m}) | m ∈ L}, for L ∈ CM.

7 / 22



C ′2 and the Representation of the C-Completion of K ∈ DR
Let ∆n = Pn ∪̇Qn, for Pn = {p0, . . . , pn−1},Qn = {q0, . . . , qn−1},
and (∆∗n)0 the extension of ∆∗n by an annihilating element 0.

The polycyclic R-dioid C ′n is R∆∗n/ρn, with R-congruence ρn from

{pi}{qi} = {1}, {pi}{qj} = ∅, (i 6= j).

Let nf : ∆∗n → Q∗nP∗n ∪ {0} normalize strings via piqj → δi ,j . Then
A ∈ R∆∗n, A/ρn ∈ C ′n is represented by {nf (w) | w ∈ A} \ {0},

The pure Dyck-language D ∈ C∆∗n is {w ∈ ∆∗n | nf (w) = 1}.

Prop. There is an embedding R-morphism · : C ′n → C ′2 based on
coding the pi , qi of ∆n by the two pairs b, d and p, q of ∆2 via

pi := bpi+1 ∈ P∗2p, qi := qi+1d ∈ qQ∗2 .
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For A-dioids D,C , the centralizer of C in D ⊗A C is

ZC (D ⊗A C ) := {ϕ ∈ D ⊗A C | ϕ(1⊗ c) = (1⊗ c)ϕ for all c ∈ C}.

Lemma

ZC ′
2
(K ⊗R C ′2) ' {[R] | R ∈ R(K × C ′2),R ⊆ K × {0, 1}}.

Theorem (Algebraic representation of C-completion of RX ∗)

CX ∗ ' ZC ′
2
(RX ∗⊗R C ′2) via L 7→

∑
{{w} ⊗ 1 | w ∈ L}

Theorem (Algebraic representation of the C-completion of K )

• ZC ′
2
(K ⊗R C ′2) is a C-dioid, i.e. µ-continuous Chomsky algebra,

• ZC ′
2
(K ⊗RC ′2) is the C-completion of ∗-cont. Kleene algebra K .
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Application: RegExp for CFLs

Use ∆2 = {〈0|, |0〉, 〈1|, |1〉}. An element of RX ∗⊗R C ′2 is the value
of some r ∈ RegExp(X ∪∆2) in the generators X and ∆2 of C ′2.

Let x ∈ X stand for its image {x} ⊗ 1 ∈ RX ∗⊗R C ′2 and t ∈ ∆∗2
for its image 1⊗ {t}/ρ2. We get for L = {ancbn | n ∈ N} ∈ CX ∗:

〈0|(a〈1|)∗c(|1〉b)∗|0〉 =
∑

n,m∈N
〈0|(a〈1|)nc(|1〉b)m|0〉 (∗-continuity)

=
∑

n,m∈N
ancbm 〈0|〈1|n|1〉m|0〉︸ ︷︷ ︸

δn,m

(x , t commute)

=
∑
n∈N

ancbn = L̂ = [R] for

R = {({ancbm}, {〈0|〈1|n|1〉m|0〉}/ρ2) |n,m ∈ N} ∈ R(RX ∗ × C ′2).

10 / 22



Automata 〈S ,A,F 〉 over K ⊗R C ′2
A finite automaton 〈S ,A,F 〉 with n states over a Kleene algebra K
consists of a matrix A ∈ Matn,n(K ) and vectors S ∈ Mat1,n(B)
and F ∈ Matn,1(B) coding the initial and final states i < n.

Ai ,j represents the 1-step transitions from state i to state j , A∗i ,j the
“set” of paths of finite length from i to j , and 〈S ,A,F 〉 represents

S · A∗ · F ∈ K .

The iteration M∗ of M ∈ Matn,n(K ) is defined by induction on n as

M∗ =

(
A B
C D

)∗
=

(
F ∗ F ∗BD∗

D∗CF ∗ D∗CF ∗BD∗ + D∗

)
,

where F = A + BD∗C and M =

(
A B
C D

)
with A and D square.

Theorem (Kozen 1991, chapter 7.1)

If K is a ∗-continuous Kleene algebra, so is Matn,n(K ), for n ≥ 1.
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By Kleene’s theorem,

RX ∗ = {SA∗F | 〈S ,A,F 〉 an automaton with entries in FX ∗}.

Let K be an R-dioid, ∆2 = P2 ∪̇ Q2 and P2 = {b, p},Q2 = {d , q}.

For a ∈ K and t ∈ ∆2, we write a and t also for their images a⊗ 1
and 1⊗ {t}/ρ2 in K ⊗R C ′2.

Theorem (Representation of ϕ ∈ K ⊗R C ′2 by an automaton)

For each ϕ ∈ K ⊗R C ′2 there is an automaton 〈S ,U + X + V ,F 〉
with n states, U ∈ {0, b, p}n×n, X ∈ Kn×n, V ∈ {0, d , q}n×n s.th.

ϕ = S(U + X + V )∗F .

Proof: by induction on the regular R ∈ R(K × C ′2) s.th. ϕ = [R].
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Normal Forms of Automata over K ⊗R C ′2
There are several ways to define Dyck’s language D ⊆ {u, x , v}∗
with one “bracket” pair u, v in arbitrary Kleene algebras:

Prop. Let K be a Kleene algebra and u, x , v ∈ K .

(i) If y ≥ 1 + x + uyv + yy has a least solution D, then D is the
least solution of y ≥ (x + uyv)∗.

(ii) If y ≥ (x + uyv)∗ has a least solution N, then N is the least
solution of y ≥ 1 + x + uyv + yy .

Notice: {u, x , v}∗ = (Dv)∗D(uD)∗ for Dyck’s D ⊆ {u, x , v}∗.

Theorem

Let K be a Kleene algebra and u, x , v ∈ K . If y ≥ (x + uyv)∗ has
a least solution N in K, then (u + x + v)∗ = (Nv)∗N(uN)∗.

13 / 22



When multiplying b, d , p, q with n × n-matrices, we identify them
with corresponding diagonal matrices.

Lemma

Let K be an R-dioid, n ∈ N, A = U +X + V with U ∈ {0, b, p}n×n,
V ∈ {0, d , q}n×n and X ∈ Kn×n. In Matn,n(K ⊗R C ′2),

y ≥ (UyV + X )∗ (1)

has a least solution, namely N := b(Up + X + qV )∗d, and

N ∈ (ZC ′
2
(K ⊗R C ′2))n×n.

Proof: Let D ⊆ {U,X ,V }∗ be Dyck’s language with brackets U,V .
1. Nm := b(Up + X + qV )md =

∑
({U,X ,V }m ∩ D) ∈ Kn×n.

2. By ∗-continuity, N =
∑

D and cN = Nc for c ∈ C ′2.
3. Show that N solves (1), since N =

∑
D.
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Theorem (First Normal Form)

Let K be an R-dioid. For ϕ ∈ K ⊗R C ′2 there are n ∈ N,S ∈ B1×n,
F ∈ Bn×1, U ∈ {0, b, p}n×n, V ∈ {0, d , q}n×n, X ∈ Kn×n s.th.

ϕ = S(NV )∗N(UN)∗F ,

where N ∈ (ZC ′
2
(K ⊗R C ′2))n×n is µy .(UyV + X )∗.

For n = 1, N commutes with U,V , so (NV )∗N(UN)∗ = V ∗NU∗.

Proof.

There is an automaton 〈S ,A,F 〉 for ϕ with A = U + X + V as
above and a least solution N of y ≥ (UyV + X )∗ such that

A∗ = (U + X + V )∗ = (NV )∗N(UN)∗.

Hence ϕ = SA∗F = S(NV )∗N(UN)∗F .
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Example: Let a, b ∈ K , ∆2 = {〈0|, 〈1|, |0〉|1〉}, and

A = (U + X + V ) =


0 a 1 0
〈1| 0 0 0
0 0 0 |1〉
0 0 b 0


1

1
- 3

2

a
?
〈1|
6

4

|1〉
?

b
6

With ā = a〈1|, b̄ = |1〉b,

A∗ =


ā∗ ā∗a ā∗b̄∗ ā∗b̄∗|1〉
〈1|ā∗ 1 + 〈1|ā∗a 〈1|ā∗b̄∗ 〈1|ā∗b̄∗|1〉

0 0 b̄∗ b̄∗|1〉
0 0 bb̄∗ 1 + bb̄∗|1〉


With N = 〈0|(U〈1|+ X + |1〉V )∗|0〉 and L̂ = 〈0|(a〈1|2)∗(|1〉2b)∗|0〉 =

(NV )∗N(UN)∗ =
∑
{anbn | n ∈ N},

0 0 0 L̂|1〉
0 0 0 L̂b|1〉
0 0 0 |1〉
0 0 0 b|1〉


∗

1 a L̂ aL̂

0 1 L̂b L̂
0 0 1 0
0 0 b 1




0 0 0 0

〈1| 〈1|a 〈1|L̂ 〈1|aL̂
0 0 0 0
0 0 0 0


∗
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Corollary (Reduced Normal Form)

Let ∆m have the bracket pairs 〈i|, |i〉 for i = 0, . . . ,m− 1. Suppose
ϕ ∈ K ⊗R C ′m is represented by 〈S ,A,F 〉 not using 〈0|, |0〉, i.e.
A = U + X + V with U ∈ {0, 〈1|, . . . 〈m − 1|}n×n, X ∈ Kn×n,
V ∈ {0, |1〉, . . . , |m − 1〉}n×n. If N = µy .(UyV + X )∗, then

〈0|ϕ|0〉 = SNF ∈ ZC ′
m

(K ⊗R C ′m).

If moreover ϕ ∈ ZC ′
m

(K ⊗R C ′m), then ϕ = 〈0|ϕ|0〉 = SNF .

Proof.

By the assumption on U and V , 〈0|V = 0 = U|0〉. As N commutes
with 〈0| and |0〉, we get 〈0|(NV )∗ = 〈0| and (UN)∗|0〉 = |0〉. Hence

〈0|A∗|0〉 = 〈0|(NV )∗N(UN)∗|0〉 = 〈0|N|0〉 = N,

〈0|ϕ|0〉 = 〈0|SA∗F |0〉 = S〈0|A∗|0〉F = SNF .

[Using · : C ′m → C ′2, we may admit 〈0| in U and |0〉 in V .]
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In the monoid case, we have: ϕ ∈ ZP′
m

(X ∗ × P ′m) = X ∗ ∪ {0} iff
ϕ = 〈0|w |0〉 for some w ∈ (X ∪ {0} ∪∆m)∗ without 〈0|, |0〉.

Theorem

Suppose ϕ ∈ RX ∗⊗R C ′m, m > 2. Then ϕ ∈ ZC ′
m

(RX ∗⊗R C ′m) iff
ϕ = 〈0|r |0〉 for some r ∈ RegExp(X ∪̇ ∆m) not containing 〈0|, |0〉.

A Second Normal Form can be given for automata with transitions
by |0〉〈0| in addition to those by elements of K and ∆m \ {〈0|, |0〉}.
If W ∈ Bn×n, ϕ = S(A + |0〉〈0|W )∗F , then 〈0|ϕ|0〉 = SN(WN)∗F .

So we can combine representations 〈0|ri |0〉 =
∑

Li of Li ∈ CX ∗ in
RX ∗⊗R C ′2 to a representation of L1L2,

〈0|r1|0〉〈0|r2|0〉 = (
∑

L1)(
∑

L2) =
∑

(L1L2).

0
〈0|

- 1
1

- 3
|0〉
- 5

〈0|
- 6

1
- 8

|0〉
- 10

2

a
?
〈1|6

4

|1〉
?

b
6

7

a
?
〈1|6

9

|1〉
?

b
6
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Calculus for context-free expressions for CX ∗
The normal forms of a ∈ K , c ∈ C ′2, (ϕ1 + ϕ2), (ϕ1 · ϕ2) and ϕ∗1
can be obtained from those of their components.

Suppose ϕi ∈ K ⊗R C ′2 is SiA
∗
i Fi with Ai = Ui + Xi + Vi and

Ni = µy .(UiyVi + Xi )
∗, so that A∗ = (NiVi )

∗Ni (UiNi )
∗.

Define S ,F ,U,X ,V ,N for (ϕ1 + ϕ2), (ϕ1 · ϕ2), and ϕ+
1 by

(S1 S2),

(
F1

F2

)
,

(
U1 0
0 U2

)
,

(
X1 0
0 X2

)
,

(
V1 0
0 V2

)
,

(
N1 0
0 N2

)

(S1 0),

(
0

F2

)
,

(
U1 0
0 U2

)
,

(
X1 F1S2

0 X2

)
,

(
V1 0
0 V2

)
,

(
N1 N ′

0 N2

)
with N ′ = µy .(N1U1yV2N2 + N1F1S2N2) ∈ ZC ′

2
(K ⊗R C ′2)n1×n2 .

S1, F1, U1, X1 + F1S1, V1, N ′

with N ′ = µy .(U1yV1 + N1 + F1S1)∗ ∈ ZC ′
2
(K ⊗R C ′2)n1×n1 .
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The two N ′ above exist, since the corresponding matrix inequations

y ≥ (N1U1yV2N2 + N1F1S2N2) resp.

y ≥ (U1yV1 + N1 + F1S1)∗

amount to1 polynomial systems

y1 ≥ p1(ȳ , b̄), . . . , ym ≥ pm(ȳ , b̄)

with parameters b̄ from the C-dioid ZC ′
2
(K ⊗R C ′2). In general,

Theorem (CSL 2016)

For all C-dioids D and n ∈ N, Matn,n(D) is a C-dioid.

Hence, for R-dioid K , Matn,n(ZC ′
2
(K ⊗R C ′2)) is a C-dioid.

1entries of UiyVj are polynomials in 0, 1 and yk,l ’s, since piyk,lqj = yk,lδi,j
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Conclusion
• The fixpoint completion of R-dioid K can be represented

inside the tensor product K ⊗R C ′2 by the centralizer of C ′2,

ZC ′
2
(K ⊗R C ′2) ⊆ K ⊗R C ′2.

• Elements ϕ of K ⊗R C ′2 can be represented as ϕ = SA∗F for
automata 〈S ,A,F 〉 with A = U + X + V , U ∈ {0, b, p}n×n,
V ∈ {0, d , q}n×n, X ∈ Kn×n for some n, where

• A∗ = (NV )∗N(UN)∗ gives a normal form for ϕ = SA∗F
• if ϕ ∈ ZC ′

2
(K ⊗R C ′2), then ϕ = SA∗F = SNF , [almost]

for N = µy .(UyV + X )∗ ∈ (ZC ′
2
(K ⊗R C ′2))n×n

• Normal forms can be built inductively from K ,C ′2 via +, ·, ∗.

Open Problems

• RX ∗⊗R C ′2 as an algebra for recognizers/parsers for CX ∗

• RX ∗⊗RRY ∗⊗R C ′2 as an algebra of translations ⊆ X ∗×Y ∗

• Construct QTC : DC → DT , a category of cont.Turing algebras
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