Normal Forms for Elements of the ${ }^{*}$-continuous Kleene Algebras $K \otimes_{\mathcal{R}} C_{2}^{\prime}$

Mark Hopkins and Hans Leiß

leiss@cis.uni-muenchen.de
2017 retired from: Universität München,
Centrum für Informations- und Sprachverarbeitung

RAMiCS 2023, April 3-6, Augsburg, Germany

Content

- Algebraization of formal language theory: categories $\mathbb{D} \mathcal{A}$ of \mathcal{A}-dioids having quotients (coequalizers) and tensor products.
- The polycyclic \mathcal{R}-dioid $C_{2}^{\prime}=\mathcal{R} \Delta_{2}^{*} / \rho_{2}$ of 2 bracket pairs
- Automata $\langle S, A, F\rangle$ over $K \otimes_{\mathcal{R}} C_{2}^{\prime}$ with $S A^{*} F \in K \otimes_{\mathcal{R}} C_{2}^{\prime}$
- First Normal form for $S A^{*} F$ with $A=(U+X+V)$:

$$
(U+X+V)^{*}=(N V)^{*} N(U N)^{*} \quad \text { for } N=\mu y \cdot(U y V+X)^{*}
$$

- Reduced normal form for $S A^{*} F \in Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$: SNF
- Regular combinations of normal forms

Algebraization of Formal Language Theory

\mathbb{M} the category of monoids $(M, \cdot, 1)$ and homomorphisms, the category of dioids $=$ idempotent semirings $(D,+, \cdot, 0,1)$ and semiring homomorphisms.

A monadic opertor \mathcal{A} (Hopkins 2008) is a functor $\mathcal{A}: \mathbb{M} \rightarrow \mathbb{D}$ that satisfies, for all monoids M, N and homomorphisms $f: M \rightarrow N$,
$A_{0} \mathcal{A} M$ is a set of subsets of M,
$A_{1} \mathcal{A} M$ contains each finite subset of M (hence $\emptyset,\{1\}$)
$A_{2} \mathcal{A} M$ is closed under product (hence a monoid),
$A_{3} \mathcal{A} M$ is closed under union of sets from $\mathcal{A} \mathcal{A} M$ (hence a dioid),
$A_{4} \mathcal{A} f:=\lambda U\{f(m) \mid m \in U\}: \mathcal{A} M \rightarrow \mathcal{A} N$ is a homomorphism.
Theorem (Hopkins 2008)
\mathcal{F} (finite), \mathcal{R} (regular), \mathcal{C} (context-free), \mathcal{T} (r.e.), \mathcal{P} (all sets) are monadic operators. [\mathcal{S} (context-sensitive) does not satisfy A_{4}]

The category $\mathbb{D} \mathcal{A} \subseteq \mathbb{D}$ of \mathcal{A}-dioids

An \mathcal{A}-dioid is a partially ordered monoid $M=(M, \cdot, 1, \leq)$ which is

- \mathcal{A}-complete: every $U \in \mathcal{A} M$ has a supremum $\sum U \in M$, and
- \mathcal{A}-distributive: for all $U, V \in \mathcal{A} M, \sum(U V)=\left(\sum U\right)\left(\sum V\right)$. equivalently: for all $a, b \in M, U \in \mathcal{A M}: a\left(\sum U\right) b=\sum a U b$.

Write \mathcal{A}-dioids as dioids $D=(M,+, \cdot, 0,1)$, with $0,+$ given by \sum, and $\mathcal{A D}$ for $\mathcal{A}(M, \cdot, 1)$.

For \mathcal{A}-dioids D, D^{\prime}, an \mathcal{A}-morphism $f: D \rightarrow D^{\prime}$ is a monotone homomorphism which is \mathcal{A}-continuous, i.e. which satisfies

$$
\text { for all } U \in \mathcal{A} D: \quad f\left(\sum U\right)=\sum^{\prime}(\mathcal{A} f)(U) \text {. }
$$

Let $\mathbb{D} \mathcal{A}$ be the category of \mathcal{A}-dioids and \mathcal{A}-morphisms. ($\mathbb{D} \mathcal{F}=\mathbb{D}$.)
$\mathbb{D} \mathcal{A}$ has quotients D / \equiv by \mathcal{A}-congruences, and tensor products.

Theorem (MH,HL 2018)

In $\mathbb{D} \mathcal{A}$, a tensor product $\top_{1}: D_{1} \rightarrow D_{1} \otimes_{\mathcal{A}} D_{2} \leftarrow D_{2}: \top_{2}$ of \mathcal{A}-dioids D_{1}, D_{2} exists, and it consists of

- $D_{1} \otimes_{\mathcal{A}} D_{2}:=\mathcal{A}\left(M_{1} \times M_{2}\right) / \equiv$, where M_{i} is the multiplicative monoid of D_{i} and \equiv is the least \mathcal{A}-congruence s.th.

$$
\left\{\left(\sum A, \sum B\right)\right\} \equiv A \times B, \quad \text { for all } A \in \mathcal{A} M_{1}, B \in \mathcal{A} M_{2}
$$

- commuting morphisms T_{1}, \top_{2} given by

$$
\top_{1}(a):=\{(a, 1)\} / \equiv, \top_{2}(b)=\{(1, b)\} / \equiv, \text { for } a \in D_{1}, b \in D_{2}
$$

The induced map of $f: D_{1} \rightarrow D \leftarrow D_{2}: g$ is

$$
h_{f, g}(U / \equiv):=\sum\{f(a) g(b) \mid(a, b) \in U\}, \quad U \in \mathcal{A}\left(M_{1} \times M_{2}\right)
$$

Write $a \otimes b:=\{(a, b)\} / \equiv,[U]:=U / \equiv=\sum\{a \otimes b \mid(a, b) \in U\}$.

Theorem (Hopkins 2008, L./Hopkins 2018)

- $\mathbb{D R}$ is the category of ${ }^{*}$-continuous Kleene algebras.
- $\mathbb{D C}$ is the category of μ-continuous Chomsky algebras.

Kleene-Algebra (Kozen 1990): right- and left-linearly closed dioid $x \geq a x+b$ and $x \geq x a+b$ have least solutions $a^{*} b$ resp. $b a^{*}$, for all values a, b.
-continuity: $a \cdot c^{} \cdot b=\sum\left\{a \cdot c^{n} \cdot b \mid n \in \mathbb{N}\right\}$, for all $a, b, c \in M$.
Chomsky-Algebra (Grathwohl e.a. 2015): algebraically closed dioid
every polynomial system $x_{1} \geq p_{1}(\bar{x}, \bar{y}), \ldots, x_{n} \geq p_{n}(\bar{x}, \bar{y})$ has a least solution in $\bar{x}=x_{1}, \ldots x_{n}$, for each value of \bar{y}.
μ-continuity: $a \cdot \mu \times p \cdot b=\sum\left\{a \cdot p^{n}(0) \cdot b \mid n \in \mathbb{N}\right\}$, all $p \in M[x]$.

There is an adjunction between $\mathbb{D} \mathcal{R}$ and $\mathbb{D} \mathcal{C}$,

$$
Q_{\mathcal{R}}^{\mathcal{C}}: \mathbb{D} \mathcal{R} \rightleftarrows \mathbb{D C}: Q_{\mathcal{C}}^{\mathcal{R}}
$$

where $Q_{\mathcal{R}}^{\mathcal{C}}(K)$ is the \mathcal{C}-completion of K, i.e. a \mathcal{C}-dioid \bar{K} with an \mathcal{R}-morphism $\eta: K \rightarrow \bar{K}$ such that any \mathcal{R}-morphism $f: K \rightarrow C$ to a \mathcal{C}-dioid C extends uniquely to a \mathcal{C}-morphism $\bar{f}: \bar{K} \rightarrow C$, i.e. $f=\bar{f} \circ \eta$:

Prop. For monoids M, the \mathcal{C}-completion of $\mathcal{R} M$ is $\mathcal{C} M$, with

$$
\bar{f}(L)=\sum\{f(\{m\}) \mid m \in L\}, \quad \text { for } L \in \mathcal{C} M
$$

C_{2}^{\prime} and the Representation of the \mathcal{C}-Completion of $K \in \mathbb{D} \mathcal{R}$

Let $\Delta_{n}=P_{n} \cup Q_{n}$, for $P_{n}=\left\{p_{0}, \ldots, p_{n-1}\right\}, Q_{n}=\left\{q_{0}, \ldots, q_{n-1}\right\}$, and $\left(\Delta_{n}^{*}\right)_{0}$ the extension of Δ_{n}^{*} by an annihilating element 0 .
The polycyclic \mathcal{R}-dioid C_{n}^{\prime} is $\mathcal{R} \Delta_{n}^{*} / \rho_{n}$, with \mathcal{R}-congruence ρ_{n} from

$$
\left\{p_{i}\right\}\left\{q_{i}\right\}=\{1\}, \quad\left\{p_{i}\right\}\left\{q_{j}\right\}=\emptyset, \quad(i \neq j) .
$$

Let $n f: \Delta_{n}^{*} \rightarrow Q_{n}^{*} P_{n}^{*} \cup\{0\}$ normalize strings via $p_{i} q_{j} \rightarrow \delta_{i, j}$. Then $A \in \mathcal{R} \Delta_{n}^{*}, A / \rho_{n} \in C_{n}^{\prime}$ is represented by $\{n f(w) \mid w \in A\} \backslash\{0\}$,

The pure Dyck-language $D \in \mathcal{C} \Delta_{n}^{*}$ is $\left\{w \in \Delta_{n}^{*} \mid n f(w)=1\right\}$.

Prop. There is an embedding \mathcal{R}-morphism $-: C_{n}^{\prime} \rightarrow C_{2}^{\prime}$ based on coding the p_{i}, q_{i} of Δ_{n} by the two pairs b, d and p, q of Δ_{2} via

$$
\overline{p_{i}}:=b p^{i+1} \in P_{2}^{*} p, \quad \overline{q_{i}}:=q^{i+1} d \in q Q_{2}^{*} .
$$

For \mathcal{A}-dioids D, C, the centralizer of C in $D \otimes_{\mathcal{A}} C$ is
$Z_{C}\left(D \otimes_{\mathcal{A}} C\right):=\left\{\varphi \in D \otimes_{\mathcal{A}} C \mid \varphi(1 \otimes c)=(1 \otimes c) \varphi\right.$ for all $\left.c \in C\right\}$.

Lemma

$$
Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right) \simeq\left\{[R] \mid R \in \mathcal{R}\left(K \times C_{2}^{\prime}\right), R \subseteq K \times\{0,1\}\right\}
$$

Theorem (Algebraic representation of \mathcal{C}-completion of $\mathcal{R} X^{*}$)

$$
\mathcal{C} X^{*} \simeq Z_{C_{2}^{\prime}}\left(\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}\right) \quad \text { via } L \mapsto \sum\{\{w\} \otimes 1 \mid w \in L\}
$$

Theorem (Algebraic representation of the \mathcal{C}-completion of K)

- $Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ is a \mathcal{C}-dioid, i.e. μ-continuous Chomsky algebra,
- $Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ is the \mathcal{C}-completion of ${ }^{*}$-cont. Kleene algebra K.

Application: RegExp for CFLs

Use $\Delta_{2}=\{\langle 0|,|0\rangle,\langle 1|,|1\rangle\}$. An element of $\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$ is the value of some $r \in \operatorname{Reg} \operatorname{Exp}\left(X \cup \Delta_{2}\right)$ in the generators X and Δ_{2} of C_{2}^{\prime}. Let $x \in X$ stand for its image $\{x\} \otimes 1 \in \mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$ and $t \in \Delta_{2}^{*}$ for its image $1 \otimes\{t\} / \rho_{2}$. We get for $L=\left\{a^{n} c b^{n} \mid n \in \mathbb{N}\right\} \in \mathcal{C} X^{*}$:

$$
\left.\begin{array}{rl}
\langle 0|(a\langle 1|)^{*} c(|1\rangle b)^{*}|0\rangle & =\sum_{n, m \in \mathbb{N}}\langle 0|(a\langle 1|)^{n} c(|1\rangle b)^{m}|0\rangle \quad\left({ }^{*} \text {-continuity }\right) \\
& =\sum_{n, m \in \mathbb{N}} a^{n} c b^{m} \underbrace{\langle 0|\left\langle\left. 1\right|^{n} \mid 1\right\rangle^{m}|0\rangle}_{\delta_{n, m}} \quad(x, t \text { commute }) \\
& =\sum_{n \in \mathbb{N}} a^{n} c b^{n}=\widehat{L}=[R] \quad \text { for }
\end{array}\right\} .
$$

Automata $\langle S, A, F\rangle$ over $K \otimes_{\mathcal{R}} C_{2}^{\prime}$

A finite automaton $\langle S, A, F\rangle$ with n states over a Kleene algebra K consists of a matrix $A \in \operatorname{Mat}_{n, n}(K)$ and vectors $S \in \operatorname{Mat}_{1, n}(\mathbb{B})$ and $F \in \operatorname{Mat}_{n, 1}(\mathbb{B})$ coding the initial and final states $i<n$.
$A_{i, j}$ represents the 1-step transitions from state i to state $j, A_{i, j}^{*}$ the "set" of paths of finite length from i to j, and $\langle S, A, F\rangle$ represents

$$
S \cdot A^{*} \cdot F \in K
$$

The iteration M^{*} of $M \in M a t_{n, n}(K)$ is defined by induction on n as

$$
M^{*}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{*}=\left(\begin{array}{cc}
F^{*} & F^{*} B D^{*} \\
D^{*} C F^{*} & D^{*} C F^{*} B D^{*}+D^{*}
\end{array}\right),
$$

where $F=A+B D^{*} C$ and $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with A and D square.
Theorem (Kozen 1991, chapter 7.1)
If K is a^{*}-continuous Kleene algebra, so is $\operatorname{Mat}_{n, n}(K)$, for $n \geq 1$.

By Kleene's theorem,
$\mathcal{R} X^{*}=\left\{S A^{*} F \mid\langle S, A, F\rangle\right.$ an automaton with entries in $\left.\mathcal{F} X^{*}\right\}$.

Let K be an \mathcal{R}-dioid, $\Delta_{2}=P_{2} \dot{\cup} Q_{2}$ and $P_{2}=\{b, p\}, Q_{2}=\{d, q\}$.
For $a \in K$ and $t \in \Delta_{2}$, we write a and t also for their images $a \otimes 1$ and $1 \otimes\{t\} / \rho_{2}$ in $K \otimes_{\mathcal{R}} C_{2}^{\prime}$.

Theorem (Representation of $\varphi \in K \otimes_{\mathcal{R}} C_{2}^{\prime}$ by an automaton)
For each $\varphi \in K \otimes_{\mathcal{R}} C_{2}^{\prime}$ there is an automaton $\langle S, U+X+V, F\rangle$ with n states, $U \in\{0, b, p\}^{n \times n}, X \in K^{n \times n}, V \in\{0, d, q\}^{n \times n}$ s.th.

$$
\varphi=S(U+X+V)^{*} F
$$

Proof: by induction on the regular $R \in \mathcal{R}\left(K \times C_{2}^{\prime}\right)$ s.th. $\varphi=[R]$.

Normal Forms of Automata over $K \otimes_{\mathcal{R}} C_{2}^{\prime}$

There are several ways to define Dyck's language $D \subseteq\{u, x, v\}^{*}$ with one "bracket" pair u, v in arbitrary Kleene algebras:

Prop. Let K be a Kleene algebra and $u, x, v \in K$.
(i) If $y \geq 1+x+u y v+y y$ has a least solution D, then D is the least solution of $y \geq(x+u y v)^{*}$.
(ii) If $y \geq(x+u y v)^{*}$ has a least solution N, then N is the least solution of $y \geq 1+x+u y v+y y$.

Notice: $\{u, x, v\}^{*}=(D v)^{*} D(u D)^{*}$ for Dyck's $D \subseteq\{u, x, v\}^{*}$.

Theorem

Let K be a Kleene algebra and $u, x, v \in K$. If $y \geq(x+u y v)^{*}$ has a least solution N in K, then $(u+x+v)^{*}=(N v)^{*} N(u N)^{*}$.

When multiplying b, d, p, q with $n \times n$-matrices, we identify them with corresponding diagonal matrices.

Lemma

Let K be an \mathcal{R}-dioid, $n \in \mathbb{N}, A=U+X+V$ with $U \in\{0, b, p\}^{n \times n}$, $V \in\{0, d, q\}^{n \times n}$ and $X \in K^{n \times n}$. In $\operatorname{Mat}_{n, n}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$,

$$
\begin{equation*}
y \geq(U y V+X)^{*} \tag{1}
\end{equation*}
$$

has a least solution, namely $N:=b(U p+X+q V)^{*} d$, and

$$
N \in\left(Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)\right)^{n \times n}
$$

Proof: Let $D \subseteq\{U, X, V\}^{*}$ be Dyck's language with brackets U, V.

1. $N_{m}:=b(U p+X+q V)^{m} d=\sum\left(\{U, X, V\}^{m} \cap D\right) \in K^{n \times n}$.
2. By ${ }^{*}$-continuity, $N=\sum D$ and $c N=N c$ for $c \in C_{2}^{\prime}$.
3. Show that N solves (1), since $N=\sum D$.

Theorem (First Normal Form)

Let K be an \mathcal{R}-dioid. For $\varphi \in K \otimes_{\mathcal{R}} C_{2}^{\prime}$ there are $n \in \mathbb{N}, S \in \mathbb{B}^{1 \times n}$, $F \in \mathbb{B}^{n \times 1}, U \in\{0, b, p\}^{n \times n}, V \in\{0, d, q\}^{n \times n}, X \in K^{n \times n}$ s.th.

$$
\varphi=S(N V)^{*} N(U N)^{*} F
$$

where $N \in\left(Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)\right)^{n \times n}$ is $\mu y .(U y V+X)^{*}$.
For $n=1, N$ commutes with U, V, so $(N V)^{*} N(U N)^{*}=V^{*} N U^{*}$.

Proof.

There is an automaton $\langle S, A, F\rangle$ for φ with $A=U+X+V$ as above and a least solution N of $y \geq(U y V+X)^{*}$ such that

$$
A^{*}=(U+X+V)^{*}=(N V)^{*} N(U N)^{*}
$$

Hence $\varphi=S A^{*} F=S(N V)^{*} N(U N)^{*} F$.

Example: Let $a, b \in K, \Delta_{2}=\{\langle 0|,\langle 1|,|0\rangle|1\rangle\}$, and

$$
A=(U+X+V)=\left.\left.\left(\begin{array}{cccc}
0 & a & 1 & 0 \\
\langle 1| & 0 & 0 & 0 \\
0 & 0 & 0 & |1\rangle \\
0 & 0 & b & 0
\end{array}\right) \quad a\left|{ }_{2}\right|\langle 1||1\rangle\right|_{4} ^{3}\right|_{4} ^{3} b
$$

With $\bar{a}=a\langle 1|, \bar{b}=|1\rangle b$,

$$
A^{*}=\left(\begin{array}{cccc}
\bar{a}^{*} & \bar{a}^{*} a & \bar{a}^{*} \bar{b}^{*} & \bar{a}^{*} \bar{b}^{*}|1\rangle \\
\langle 1| \bar{a}^{*} & 1+\langle 1| \mid a^{*} a & \langle 1| \bar{a}^{*} \bar{b}^{*} & \langle 1| \bar{a}^{*} \bar{b}^{*}|1\rangle \\
0 & 0 & \bar{b}^{*} & \bar{b}^{*}|\overline{1}\rangle \\
0 & 0 & b \bar{b}^{*} & 1+b \bar{b}^{*}|1\rangle
\end{array}\right)
$$

With $N=\langle 0|(U\langle 1|+X+|1\rangle V)^{*}|0\rangle$ and $\widehat{L}=\langle 0|\left(a\left\langle\left. 1\right|^{2}\right)^{*}\left(|1\rangle^{2} b\right)^{*}|0\rangle=\right.$

$$
\begin{aligned}
& (N V)^{*} N(U N)^{*}= \\
& \quad\left(\begin{array}{cccc}
0 & 0 & 0 & \widehat{L}|1\rangle \\
0 & 0 & 0 & \hat{L} b|1\rangle \\
0 & 0 & 0 & |1\rangle \\
0 & 0 & 0 & b|1\rangle
\end{array}\right)^{n}\left(\begin{array}{cccc}
1 & a & \widehat{L} & \left.\hat{L} b^{n} \mid n \in \mathbb{L}\right\} \\
0 & 1 & \widehat{L} b & \widehat{L} \\
0 & 0 & 1 & 0 \\
0 & 0 & b & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\langle 1| & \langle 1| a & \langle 1| \widehat{L} & \langle 1| a \widehat{L} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)^{*}
\end{aligned}
$$

Corollary (Reduced Normal Form)

Let Δ_{m} have the bracket pairs $\langle i|,|i\rangle$ for $i=0, \ldots, m-1$. Suppose $\varphi \in K \otimes_{\mathcal{R}} C_{m}^{\prime}$ is represented by $\langle S, A, F\rangle$ not using $\langle 0|,|0\rangle$, i.e. $A=U+X+V$ with $U \in\{0,\langle 1|, \ldots\langle m-1|\}^{n \times n}, X \in K^{n \times n}$, $V \in\{0,|1\rangle, \ldots,|m-1\rangle\}^{n \times n}$. If $N=\mu y .(U y V+X)^{*}$, then

$$
\langle 0| \varphi|0\rangle=S N F \in Z_{C_{m}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{m}^{\prime}\right)
$$

If moreover $\varphi \in Z_{C_{m}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{m}^{\prime}\right)$, then $\varphi=\langle 0| \varphi|0\rangle=S N F$.

Proof.

By the assumption on U and $V,\langle 0| V=0=U|0\rangle$. As N commutes with $\langle 0|$ and $|0\rangle$, we get $\langle 0|(N V)^{*}=\langle 0|$ and $(U N)^{*}|0\rangle=|0\rangle$. Hence

$$
\begin{aligned}
\langle 0| A^{*}|0\rangle & =\langle 0|(N V)^{*} N(U N)^{*}|0\rangle=\langle 0| N|0\rangle=N \\
\langle 0| \varphi|0\rangle & =\langle 0| S A^{*} F|0\rangle=S\langle 0| A^{*}|0\rangle F=S N F
\end{aligned}
$$

[Using $\cdot: C_{m}^{\prime} \rightarrow C_{2}^{\prime}$, we may admit $\langle 0|$ in U and $|0\rangle$ in V.]

In the monoid case, we have: $\varphi \in Z_{P_{m}^{\prime}}\left(X^{*} \times P_{m}^{\prime}\right)=X^{*} \cup\{0\}$ iff $\varphi=\langle 0| w|0\rangle$ for some $w \in\left(X \cup\{0\} \cup \Delta_{m}\right)^{*}$ without $\langle 0|,|0\rangle$.

Theorem

Suppose $\varphi \in \mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{m}^{\prime}, m>2$. Then $\varphi \in Z_{C_{m}^{\prime}}\left(\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{m}^{\prime}\right)$ iff $\varphi=\langle 0| r|0\rangle$ for some $r \in \operatorname{Reg} \operatorname{Exp}\left(X \dot{\cup} \Delta_{m}\right)$ not containing $\langle 0|,|0\rangle$.

A Second Normal Form can be given for automata with transitions by $|0\rangle\langle 0|$ in addition to those by elements of K and $\Delta_{m} \backslash\{\langle 0|,|0\rangle\}$. If $W \in \mathbb{B}^{n \times n}, \varphi=S(A+|0\rangle\langle 0| W)^{*} F$, then $\langle 0| \varphi|0\rangle=S N(W N)^{*} F$.
So we can combine representations $\langle 0| r_{i}|0\rangle=\sum L_{i}$ of $L_{i} \in \mathcal{C} X^{*}$ in $\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$ to a representation of $L_{1} L_{2}$,

Calculus for context-free expressions for $\mathcal{C} X^{*}$

The normal forms of $a \in K, c \in C_{2}^{\prime},\left(\varphi_{1}+\varphi_{2}\right),\left(\varphi_{1} \cdot \varphi_{2}\right)$ and φ_{1}^{*} can be obtained from those of their components.

Suppose $\varphi_{i} \in K \otimes_{\mathcal{R}} C_{2}^{\prime}$ is $S_{i} A_{i}^{*} F_{i}$ with $A_{i}=U_{i}+X_{i}+V_{i}$ and $N_{i}=\mu y .\left(U_{i} y V_{i}+X_{i}\right)^{*}$, so that $A^{*}=\left(N_{i} V_{i}\right)^{*} N_{i}\left(U_{i} N_{i}\right)^{*}$.

Define S, F, U, X, V, N for $\left(\varphi_{1}+\varphi_{2}\right),\left(\varphi_{1} \cdot \varphi_{2}\right)$, and φ_{1}^{+}by
$\left(\begin{array}{ll}S_{1} & S_{2}\end{array}\right),\binom{F_{1}}{F_{2}},\left(\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right),\left(\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right),\left(\begin{array}{cc}V_{1} & 0 \\ 0 & V_{2}\end{array}\right),\left(\begin{array}{cc}N_{1} & 0 \\ 0 & N_{2}\end{array}\right)$
$\left(\begin{array}{ll}S_{1} & 0\end{array}\right),\binom{0}{F_{2}},\left(\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right),\left(\begin{array}{cc}X_{1} & F_{1} S_{2} \\ 0 & X_{2}\end{array}\right),\left(\begin{array}{cc}V_{1} & 0 \\ 0 & V_{2}\end{array}\right),\left(\begin{array}{cc}N_{1} & N^{\prime} \\ 0 & N_{2}\end{array}\right)$
with $N^{\prime}=\mu y .\left(N_{1} U_{1} y V_{2} N_{2}+N_{1} F_{1} S_{2} N_{2}\right) \in Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)^{n_{1} \times n_{2}}$.

$$
S_{1}, \quad F_{1}, \quad U_{1}, \quad X_{1}+F_{1} S_{1}, \quad V_{1}, \quad N^{\prime}
$$

with $N^{\prime}=\mu y \cdot\left(U_{1} y V_{1}+N_{1}+F_{1} S_{1}\right)^{*} \in Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)^{n_{1} \times n_{1}}$.

The two N^{\prime} above exist, since the corresponding matrix inequations

$$
\begin{aligned}
& y \geq\left(N_{1} U_{1} y V_{2} N_{2}+N_{1} F_{1} S_{2} N_{2}\right) \quad \text { resp. } \\
& y \geq\left(U_{1} y V_{1}+N_{1}+F_{1} S_{1}\right)^{*}
\end{aligned}
$$

amount to ${ }^{1}$ polynomial systems

$$
y_{1} \geq p_{1}(\bar{y}, \bar{b}), \ldots, y_{m} \geq p_{m}(\bar{y}, \bar{b})
$$

with parameters \bar{b} from the \mathcal{C}-dioid $Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$. In general,

Theorem (CSL 2016)
For all \mathcal{C}-dioids D and $n \in \mathbb{N}, \operatorname{Mat}_{n, n}(D)$ is a \mathcal{C}-dioid.
Hence, for \mathcal{R}-dioid K, $\operatorname{Mat}_{n, n}\left(Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)\right)$ is a \mathcal{C}-dioid.

[^0]
Conclusion

- The fixpoint completion of \mathcal{R}-dioid K can be represented inside the tensor product $K \otimes_{\mathcal{R}} C_{2}^{\prime}$ by the centralizer of C_{2}^{\prime},

$$
Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right) \subseteq K \otimes_{\mathcal{R}} C_{2}^{\prime}
$$

- Elements φ of $K \otimes_{\mathcal{R}} C_{2}^{\prime}$ can be represented as $\varphi=S A^{*} F$ for automata $\langle S, A, F\rangle$ with $A=U+X+V, U \in\{0, b, p\}^{n \times n}$, $V \in\{0, d, q\}^{n \times n}, X \in K^{n \times n}$ for some n, where
- $A^{*}=(N V)^{*} N(U N)^{*}$ gives a normal form for $\varphi=S A^{*} F$
- if $\varphi \in Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$, then $\varphi=S A^{*} F=S N F$, [almost] for $N=\mu y .(U y V+X)^{*} \in\left(Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)\right)^{n \times n}$
- Normal forms can be built inductively from K, C_{2}^{\prime} via,$+ \cdot$, .

Open Problems

- $\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$ as an algebra for recognizers/parsers for $\mathcal{C} X^{*}$
- $\mathcal{R} X^{*} \otimes_{\mathcal{R}} \mathcal{R} Y^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$ as an algebra of translations $\subseteq X^{*} \times Y^{*}$
- Construct $Q_{\mathcal{C}}^{\mathcal{T}}: \mathbb{D C} \rightarrow \mathbb{D} \mathcal{T}$, a category of cont. Turing algebras

國 M．Hopkins．The algebraic approach I：The algebraization of the Chomsky hierarchy．II：Dioids，quantales and monads． In Proc．Relational Methods in Computer Science／Applications of Kleene Algebra，LNCS 4988，pp．155－190．Springer 2008.

囯 M．Hopkins and H．Leiß．Coequalizers and tensor products for continuous idempotent semirings．
In Proc．17th Int．Conf．on Relational and Algebraic Methods in Computer Science，LNCS 11194，37－52．Springer 2018.

围 H．Leiß．An algebraic representation of the fixed－point closure of＊－continuous Kleene algebras．
Mathematical Structures in Computer Science，vol．32．6， 2022 https：／／www．cis．uni－muenchen．de／～leiss／ MSCS－2020－072．R2．rev279．pdf（submitted version）

R H．Leiß and M．Hopkins．C－dioids and μ－continuous Chomsky algebras．
In Proc．17th Int．Conf．on Relational and Algebraic Methods in Computer Science，RAMiCS 2018，21－36．Springer 2018.

[^0]: ${ }^{1}$ entries of $U_{i} y V_{j}$ are polynomials in 0,1 and $y_{k, I}$'s, since $p_{i} y_{k, l} q_{j}=y_{k, l} \delta_{i, j}$

