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Content

• The Chomsky-Schützenberger-Theorem: how to obtain CX ∗

from R(X ∪̇ ∆)∗ and Dyck’s language DX ∈ C(X ∪̇ ∆)∗

• Subcategories DA of the category D of idempotent semirings

• DR = ∗-continuous Kleene algebras
• DC = µ-continuous Chomsky algebras

There is an adjunction QCR : DR� DC : QRC where

• QCR gives the C-completion or “fixed-point closure”
• QRC is the forgetful functor (aka restriction of µ to ∗)

• Algebraic representation: QCR(K ) = ZR∆∗/ρ(K ⊗RR∆∗/ρ)

• For K = RX ∗: RegExp(X ∪̇ ∆) name CX ∗ = QCR(RX ∗)
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The classical CST for free monoids
X ∗ = (X ∗, ·, 1) the free monoid generated by the fin.set X

M[∆] = the free extension of the monoid M by the set ∆
= all interleaved sequences of elements of M and ∆∗

Theorem (Chomsky/Schützenberger 1963)

Let X be a finite set and

• ∆2 = {b, d , p, q} a set of two bracket pairs b, d and p, q,

• hX∗ : X ∗[∆2]→ X ∗ the bracket-erasing homomorphism,

• DX ∈ C(X ∗[∆2]) Dyck’s language, the least S ⊆ X ∗[∆2] s.th.

S ≥ 1 + X + bSd + pSq + SS .

Then: CX ∗ = {hX∗(R ∩ DX ) | R ∈ R(X ∗[∆2])}.

Our goal: an algebraic construction of CX ∗ from RX ∗ itself.
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Categories DA of Dioids

M the category of monoids (M, ·, 1) and homomorphisms,
D the category of dioids = idempotent semirings (D,+, ·, 0, 1)

and semiring homomorphisms.

A monadic opertor A (Hopkins 2008) is a functor A : M→ D such
that for all monoids M,N and homomorphisms f : M → N

A0 AM is a set of subsets of M,

A1 AM contains each finite subset of M (hence ∅, {1}),

A2 AM is closed under elem.wise product (hence a monoid),

A3 AM is closed under union of sets fromA(AM) (hence a dioid),

A4 Af := λU {f (m) | m ∈ U} : AM → AN is a homomorphism.

Theorem (Hopkins 2008)

F(finite),R(regular), C(context-free), T (r.e.),P(all sets) are
monadic operators. [S(context-sensitive) does not satisfy A4]
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An A-dioid is a partially ordered monoid M = (M, ·, 1,≤) which is

• A-complete: every U ∈ AM has a supremum
∑

U ∈ M, and

• A-distributive: for all U,V ∈ AM,
∑

(UV ) = (
∑

U)(
∑

V ).

equivalently: for all a, b ∈ M,U ∈ AM : a(
∑

U)b =
∑

aUb.

Prop. AM, m 7→{m}, is the A-dioid completion of the monoid M.

Notation: A-dioids D = (M,+, ·, 0, 1) as dioids, with 0,+ via
∑

,
AD for A(M, ·, 1).

For A-dioids D,D ′, an A-morphism f : D → D ′ is a monotone
homomorphism which is A-continuous, i.e.

f (
∑

U) =
∑
′(Af )(U) for all U ∈ AD..

Let DA be the category of A-dioids and A-morphisms. (DF = D.)
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Theorem (Hopkins 2008, L./Hopkins 2018)

• DR is the category of ∗-continuous Kleene algebras.

• DC is the category of µ-continuous Chomsky algebras.

Kleene-Algebra (Kozen 1990): right-/left-linearly closed dioid D

x ≥ ax + b
x ≥ xa + b

has least solution
a∗b
ba∗

, for all a, b ∈ D.

∗-continuity: a · c∗ · b =
∑
{a · cn · b | n ∈ N}, for all a, b, c ∈ D.

Chomsky-Algebra (Grathwohl e.a. 2015): algebraically closed dioid

every polynomial system x1 ≥ p1(x̄ , ȳ), . . . , xn ≥ pn(x̄ , ȳ)
has a least solution in x̄ =x1 . . . xn, for all values of ȳ in D.

µ-continuity: a · µxp · b =
∑
{a · pn(0) · b | n ∈ N}, all p ∈ D[x ].
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“Fixed-point-closure” = C-completion

A C-completion of R-dioid K is a C-dioid K with an R-morphism
η : K → K such that any R-morphism f : K → C to a C-dioid C
extends uniquely to a C-morphism f̄ : K → C , i.e. f = f̄ ◦ η:

C

6·······

�
�
�

f �
�
��

·····

f̄

K
η
- K

Prop. For monoids M, the C-completion of RM is CM, with

f̄ (L) =
∑
{f ({m}) | m ∈ L}, for L ∈ CM,

Theorem (Hopkins 2008)

The C-completion is part of an adjunction QCR : DR� DC : QRC .
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The polycyclic monoid P ′n and A-dioid C ′n,A = A∆∗n/ρn

We are looking for an algebra in which hX∗(R ∩ DX ) can be done.

Idea: Use alphabets Σ = X ∪̇ ∆n of letters X and brackets ∆n,
and languages over Σ in which letters commute with brackets.

Let ∆n = Pn ∪̇Qn, for Pn = {p0, . . . , pn−1},Qn = {q0, . . . , qn−1},
and (∆∗n)0 the extension of ∆∗n by an annihilating element 0.

The polycyclic monoid P ′n is the quotient monoid (∆∗n)0/ρn where

ρn = {piqi = 1 | i < n} ∪ {piqj = 0 | i , j < n, i 6= j}.

In P ′n each w ∈ ∆∗n has a normal form

nf (w) ∈ {0} ∪ Q∗nP∗n ,

obtained by cancelling matching brackets piqi = 1 (resp. piqj = 0).
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The normal form nf (w) represents the element w/ρn of P ′n. Hence

P ′n ' (Q∗nP∗n ∪ {0}, ·, 1) with u · v = nf (uv)

This extends to X ∗[∆n]0 where letters commute with brackets, and
nf commutes pi to the right, qj to the left, and applies piqj = δi ,j :

X ∗ × P ′n := X ∗[∆n]0/(ρn ∪ {wt = tw | w ∈ X ∗, t ∈ ∆n})
' (Q∗nX ∗P∗n ∪ {0}, ·, 1) with u · v = nf (uv)

For new pn, qn: R ⊆ X ∗[∆n]⇒ nf (pnRqn) \ {0} = hX∗(R ∩ DX ).

The polycyclic R-dioid C ′n is an “R-quotient” of R∆∗n resp. RP ′n.

Then: lift X ∗ × P ′n to an “R-tensor product” RX ∗⊗R C ′n of RX ∗

and C ′n where A ∈ RX ∗ and (the quotient of) B ∈ RP ′n commute.
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An A-congruence on an A-dioid D is a dioid-congruence ρ s.th. for
all U,V ∈ AD, if (U/ρ)↓ = (V /ρ)↓, then (

∑
U)/ρ = (

∑
V )/ρ.

Prop. If D is an A-dioid and ρ an A-congruence on D, then D/ρ
is an A-dioid and the canonical map d 7→ d/ρ is an A-morphism.

For any E ⊆ D × D, there is a least A-congruence ρ ⊇ E on D.

The polycyclic R-dioid C ′n is R∆∗n/ρn, with R-congruence ρn by

{pi}{qi} = {1}, {pi}{qj} = ∅, (i 6= j).

For A ∈ R∆∗n, A/ρn ∈ C ′n is represented by {nf (w) | w ∈ A} \ {0}.

Prop. C ′n ' RP ′n/({0} = ∅) where P ′n ' (Q∗nP∗n ∪ {0}, ·, 1).
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The Tensor Product D1⊗AD2 of A-Dioids

In a category C with reducts in M, a tensor product of M1,M2,
consists of an object M1 ⊗M2 with two commuting1 morphisms

>1 : M1 → M1 ⊗M2 ← M2 : >2,

such that any pair f : M1 → M ← M2 : g of commuting morphisms
decompose with a unique induced morphism hf ,g as shown:

M1

>1- M1 ⊗M2
�
>2

M2

˙̇
˙̇
˙̇

@
@
@
f @
@
@R

˙̇
˙̇
?̇

hf ,g

	�
�
� g
�
�
�

M

1i.e. >1(a)>2(b) = >2(b)>1(a) for all a ∈ M1, b ∈ M2
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Theorem (MH,HL 2018)

The tensor product D1⊗AD2 of A-dioids D1,D2 consists of

• D1⊗AD2 = A(M1 ×M2)/≡, where Mi is the multiplicative
monoid of Di and ≡ is the least A-congruence s.th.

{(
∑

A,
∑

B)} ≡ A× B, for all A ∈ AM1,B ∈ AM2,

• the commuting morphisms >1 : D1 → D1⊗AD2 ← D2 : >2,

a 7→ {(a, 1)}/≡ and b 7→ {(1, b)}/≡, for a ∈ D1, b ∈ D2.

The induced morphism of f : D1 → D ← D2 : g is

hf ,g (U/≡) =
∑
{f (a)g(b) | (a, b) ∈ U}, U ∈ A(M1 ×M2).

Notation: a⊗ b := T1(a)T2(b) = {(a, b)}/≡
[U] := U/≡ =

∑
{a⊗ b | (a, b) ∈ U}
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Algebraic Representation of the C-Completion

For A-dioids D,C , the centralizer of C in D ⊗A C is

ZC (D ⊗A C )

:= {ϕ ∈ D ⊗A C | ϕ(1⊗ c) = (1⊗ c)ϕ for all c ∈ C}.

This is an A-dioid, by properties of
∑

: A(D ⊗A C )→ D ⊗A C .

Lemma For R-dioid K ,

ZC ′2
(K ⊗R C ′2) = {[R] | R ∈ R(K × C ′2),R ⊆ K × {0, 1}}.

Theorem (Algebraic representation of QCR(RM) = CM)

For each monoid M, CM ' ZC ′2
(RM ⊗R C ′2).
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Proof: (using M = X ∗)

1. For each L ∈ CM, its elem.wise image has a least upper bound

L̂ :=
∑
{{m} ⊗ 1 | m ∈ L} ∈ ZC ′2

(RM ⊗R C ′2).

Prf.: For L ∈ CX ∗ there is R ∈ R(X ∗[∆n]) with L = hX∗(R ∩DX ).

Code brackets pi , qi of ∆n by the two pairs b, d and p, q of ∆2 via

pi := bpi+1 ∈ P∗2 p, qi := qi+1d ∈ qQ∗2 .

So in P ′2: pi qj = δi ,j and bqi = 0 = pid , hence b Q∗n P∗n d = {0, 1}.

For w ∈ X ∗[∆n]:

w ∈ DX ⇐⇒ h∆∗n (w)/ρn = 1 ⇐⇒ b h∆∗n (w) d/ρ2 = 1,

w /∈ DX ⇐⇒ h∆∗n (w)/ρn 6= 1 ⇐⇒ b h∆∗n (w) d/ρ2 = 0.
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Let h : X ∗[∆n]→ RX ∗ ×R∆∗2/ρ2 be the homomorphism

w 7→ ({hX∗(w)}, {h∆∗n (w)}/ρ2)

Then Rh maps R ∈ R(X ∗[∆n]) to some R ′ ∈ R(RX ∗ × C ′2), so

U := {({1}, {b}/ρ2)} · R ′ · {({1}, {d}/ρ2)} ∈ R(RX ∗ × C ′2),

and [U] =
∑
{{hX∗(w)} ⊗ {b h∆∗2

(w) d}/ρ2 | w ∈ R}

=
∑
{{hX∗(w)} ⊗ 1 | w ∈ R ∩ DX} ({m} ⊗ 0 = 0)

=
∑
{{m} ⊗ 1 | m ∈ L} = L̂.

Since U ⊆ RX ∗ × {0, 1}, by the Lemma, [U] ∈ ZC ′2
(RX ∗⊗R C ′2).

Then show

2. (Algebraic CST) ·̂ : CM → ZC ′2
(RM ⊗R C ′2) is injective.
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3. (Algebraic ReverseCST) The map [R] 7→ [R]∨ given by

[R]∨ :=
⋃
{A | (A, 1) ∈ R}, for R ∈ R(RM × C ′2),

is an injective map ·∨ : ZC ′2
(RM ⊗R C ′2)→ CM.

4. ·̂ and ·∨ are inverse to each other and homomorphisms.

5. ZC ′2
(RM ⊗R C ′2) is a C-dioid, ·̂ and ·∨ are C-morphisms.

Each element of RX ∗⊗R C ′2 is the value of a regular expression
r ∈ RegExp(X ∪̇∆2) in the generators X and ∆2 of C ′2 = R∆∗2/ρ2.
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Theorem (Algebraic representation of QCR(K ) for K ∈ DR)

For each ∗-continuous Kleene algebra K ,

• ZC ′2
(K ⊗R C ′2) is a C-dioid, i.e. µ-continuous Chomsky algebra,

• ZC ′2
(K ⊗R C ′2) is the C-completion QCR(K ) of K .

Corollary

For any K ∈ DR, there is a C-morphism ·̂ : CK → ZC ′2
(K ⊗R C ′2),

L̂ :=
∑
{m ⊗ 1 | m ∈ L}, such that CK/ker( ·̂ ) ' ZC ′2

(K ⊗R C ′2).

The “categorical Chomsky-Schützenberger Theorem” is

QCR(K ) ⊂∼ ZC ′2
(K ⊗R C ′2),

the analoge of the CST CX ∗ ⊆ {hX∗(R ∩ DX ) | R ∈ R(X ∗[∆2])}.
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Application: Regular expressions for context-free languages

Let L = {ancbn | n ∈ N} ∈ CX ∗ and ∆2 = {〈0|, |0〉, 〈1|, |1〉}.

For w ∈ X ∗ and t ∈ ∆∗2 write wt for {w} ⊗ {t}/ρ2 ∈ RX ∗⊗R C ′2.

〈0|(a〈1|)∗c(|1〉b)∗|0〉 =
∑

n,m∈N
〈0|(a〈1|)nc(|1〉b)m|0〉 (∗-continuity)

=
∑

n,m∈N
ancbm 〈0|〈1|n|1〉m|0〉︸ ︷︷ ︸

δn,m

(x , t commute)

=
∑
n∈N

ancbn = L̂ = [U] for

U = {({ancbm}, {〈0|〈1|n|1〉m|0〉}/ρ2) |n,m ∈ N} ∈ R(RX ∗ × C ′2).

Elements of ZC ′2
(RX ∗⊗R C ′2) are those 〈0|r |0〉 where r has 〈0|, |0〉

only in codes pi = 〈0|〈1|i+1, qi = |1〉i+1|0〉 of other brackets pi , qi .
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CST-proof: CF 3 G 7→ rG ∈ RegExp with L(G ) = hX∗(L(rG )∩DX )

CF-grammar: Least solution
y ≥ ayb + c L = {ancbn | n ∈ N} ∈ CX ∗

wrap rhs variables by brackets:
y ≥ a〈1|y |1〉b + c L∆ = {(a〈1|)nc(|1〉b)n | n ∈ N}

add continuation variables yF :
y ≥ a〈1|y |1〉b yF + c yF

yF ≥ 1
L∆ ∈ C(X ∗[∆])

L = hX∗(L∆)
break into right-linear
initial- and follow-factors:

y ≥ a〈1|y + c yF
yF ≥ 1 + |1〉b yF

R = (a〈1|)∗c(|1〉b)∗ ∈ R(X ∗[∆])
L∆ = R ∩ DX

We constructed a ∗-continuous Kleene algebra K ⊃∼ CX ∗ s.th.

L = µy(ayb + c)CX
∗ ' 〈0|(a〈1|)∗c(|1〉b)∗|0〉K .
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Open Problems

1. Application in parser generation and compilation, e.g.
• automata of 〈0|rG |0〉 for parsing with CFG G
• µ-terms of depth n vs. Dyckn, balanced brackets of depth n

2. Which DA are closed under n× n-matrix semiring formation ?

3. A similar algebra of “Turing-expressions” for T X ∗ in DT ?

4. A context-sensitive cat. DS with “non-erasing”-homorphisms?
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