An Algebraic Representation of the Fixed-Point Closure of *-Continuous Kleene Algebras

A Categorical Chomsky-Schützenberger Theorem

Hans Leiß
leiss@cis.uni-muenchen.de
extending work by/joint with Mark Hopkins

2017 retired from: Universität München, Centrum für Informations- und Sprachverarbeitung

RAMiCS 2023, April 3-6, Augsburg, Germany

Content

- The Chomsky-Schützenberger-Theorem: how to obtain $\mathcal{C} X^{*}$ from $\mathcal{R}(X \dot{\cup} \Delta)^{*}$ and Dyck's language $D_{X} \in \mathcal{C}(X \dot{U} \Delta)^{*}$
- Subcategories $\mathbb{D} \mathcal{A}$ of the category \mathbb{D} of idempotent semirings
- $\mathbb{D} \mathcal{R}={ }^{*}$-continuous Kleene algebras
- $\mathbb{D C}=\mu$-continuous Chomsky algebras

There is an adjunction $Q_{\mathcal{R}}^{\mathcal{C}}: \mathbb{D} \mathcal{R} \rightleftarrows \mathbb{D C}: Q_{\mathcal{C}}^{\mathcal{R}}$ where

- $Q_{\mathcal{R}}^{\mathcal{C}}$ gives the \mathcal{C}-completion or "fixed-point closure"
- $Q_{\mathcal{C}}^{\mathcal{R}}$ is the forgetful functor (aka restriction of μ to ${ }^{*}$)
- Algebraic representation: $Q_{\mathcal{R}}^{\mathcal{C}}(K)=Z_{\mathcal{R}} \Delta^{*} / \rho\left(K \otimes_{\mathcal{R}} \mathcal{R} \Delta^{*} / \rho\right)$
- For $K=\mathcal{R} X^{*}: \operatorname{Reg} \operatorname{Exp}(X \dot{\cup} \Delta)$ name $\mathcal{C} X^{*}=Q_{\mathcal{R}}^{\mathcal{C}}\left(\mathcal{R} X^{*}\right)$

The classical CST for free monoids

$X^{*}=\left(X^{*}, \cdot, 1\right)$ the free monoid generated by the fin.set X
$M[\Delta]=$ the free extension of the monoid M by the set Δ
$=$ all interleaved sequences of elements of M and Δ^{*}
Theorem (Chomsky/Schützenberger 1963)
Let X be a finite set and

- $\Delta_{2}=\{b, d, p, q\}$ a set of two bracket pairs b, d and p, q,
- $h_{X^{*}}: X^{*}\left[\Delta_{2}\right] \rightarrow X^{*}$ the bracket-erasing homomorphism,
- $D_{X} \in \mathcal{C}\left(X^{*}\left[\Delta_{2}\right]\right)$ Dyck's language, the least $S \subseteq X^{*}\left[\Delta_{2}\right]$ s.th.

$$
S \geq 1+X+b S d+p S q+S S
$$

Then: $\quad \mathcal{C} X^{*}=\left\{h_{X^{*}}\left(R \cap D_{X}\right) \mid R \in \mathcal{R}\left(X^{*}\left[\Delta_{2}\right]\right)\right\}$.
Our goal: an algebraic construction of $\mathcal{C} X^{*}$ from $\mathcal{R} X^{*}$ itself.

Categories $\mathbb{D} \mathcal{A}$ of Dioids

\mathbb{M} the category of monoids $(M, \cdot, 1)$ and homomorphisms,
\mathbb{D} the category of dioids $=$ idempotent semirings $(D,+, \cdot, 0,1)$ and semiring homomorphisms.

A monadic opertor \mathcal{A} (Hopkins 2008) is a functor $\mathcal{A}: \mathbb{M} \rightarrow \mathbb{D}$ such that for all monoids M, N and homomorphisms $f: M \rightarrow N$
$A_{0} \mathcal{A} M$ is a set of subsets of M,
$A_{1} \mathcal{A} M$ contains each finite subset of M (hence $\emptyset,\{1\}$),
$A_{2} \mathcal{A} M$ is closed under elem.wise product (hence a monoid),
$A_{3} \mathcal{A} M$ is closed under union of sets from $\mathcal{A}(\mathcal{A M})$ (hence a dioid),
$A_{4} \mathcal{A} f:=\lambda U\{f(m) \mid m \in U\}: \mathcal{A} M \rightarrow \mathcal{A} N$ is a homomorphism.
Theorem (Hopkins 2008)
\mathcal{F} (finite), \mathcal{R} (regular), \mathcal{C} (context-free), \mathcal{T} (r.e.), \mathcal{P} (all sets) are monadic operators. [\mathcal{S} (context-sensitive) does not satisfy A_{4}]

An \mathcal{A}-dioid is a partially ordered monoid $M=(M, \cdot, 1, \leq)$ which is

- \mathcal{A}-complete: every $U \in \mathcal{A} M$ has a supremum $\sum U \in M$, and
- \mathcal{A}-distributive: for all $U, V \in \mathcal{A} M, \sum(U V)=\left(\sum U\right)\left(\sum V\right)$. equivalently: for all $a, b \in M, U \in \mathcal{A M}: a\left(\sum U\right) b=\sum a U b$. Prop. $\mathcal{A} M, m \mapsto\{m\}$, is the \mathcal{A}-dioid completion of the monoid M. Notation: \mathcal{A}-dioids $D=(M,+, \cdot, 0,1)$ as dioids, with $0,+$ via \sum, $\mathcal{A D}$ for $\mathcal{A}(M, \cdot, 1)$.

For \mathcal{A}-dioids D, D^{\prime}, an \mathcal{A}-morphism $f: D \rightarrow D^{\prime}$ is a monotone homomorphism which is \mathcal{A}-continuous, i.e.

$$
f\left(\sum U\right)=\sum^{\prime}(\mathcal{A} f)(U) \quad \text { for all } U \in \mathcal{A} D .
$$

Let $\mathbb{D} \mathcal{A}$ be the category of \mathcal{A}-dioids and \mathcal{A}-morphisms. ($\mathbb{D} \mathcal{F}=\mathbb{D}$.)

Theorem (Hopkins 2008, L./Hopkins 2018)

- $\mathbb{D R}$ is the category of *-continuous Kleene algebras.
- $\mathbb{D C}$ is the category of μ-continuous Chomsky algebras.

Kleene-Algebra (Kozen 1990): right-/left-linearly closed dioid D

$$
\begin{aligned}
& x \geq a x+b \\
& x \geq x a+b
\end{aligned} \text { has least solution } \begin{gathered}
a^{*} b \\
b a^{*}
\end{gathered}, \text { for all } a, b \in D .
$$

-continuity: $a \cdot c^{} \cdot b=\sum\left\{a \cdot c^{n} \cdot b \mid n \in \mathbb{N}\right\}$, for all $a, b, c \in D$.
Chomsky-Algebra (Grathwohl e.a. 2015): algebraically closed dioid
every polynomial system $x_{1} \geq p_{1}(\bar{x}, \bar{y}), \ldots, x_{n} \geq p_{n}(\bar{x}, \bar{y})$ has a least solution in $\bar{x}=x_{1} \ldots x_{n}$, for all values of \bar{y} in D.
μ-continuity: $a \cdot \mu \times p \cdot b=\sum\left\{a \cdot p^{n}(0) \cdot b \mid n \in \mathbb{N}\right\}$, all $p \in D[x]$.

"Fixed-point-closure" $=\mathcal{C}$-completion

A \mathcal{C}-completion of \mathcal{R}-dioid K is a \mathcal{C}-dioid \bar{K} with an \mathcal{R}-morphism $\eta: K \rightarrow \bar{K}$ such that any \mathcal{R}-morphism $f: K \rightarrow C$ to a \mathcal{C}-dioid C extends uniquely to a \mathcal{C}-morphism $\bar{f}: \bar{K} \rightarrow C$, i.e. $f=\bar{f} \circ \eta$:

Prop. For monoids M, the \mathcal{C}-completion of $\mathcal{R} M$ is $\mathcal{C} M$, with

$$
\bar{f}(L)=\sum\{f(\{m\}) \mid m \in L\}, \quad \text { for } L \in \mathcal{C} M
$$

Theorem (Hopkins 2008)
The \mathcal{C}-completion is part of an adjunction $Q_{\mathcal{R}}^{\mathcal{C}}: \mathbb{D} \mathcal{R} \rightleftarrows \mathbb{D C}: Q_{\mathcal{C}}^{\mathcal{R}}$.

The polycyclic monoid P_{n}^{\prime} and \mathcal{A}-dioid $C_{n, \mathcal{A}}^{\prime}=\mathcal{A} \Delta_{n}^{*} / \rho_{n}$

We are looking for an algebra in which $h_{X^{*}}\left(R \cap D_{X}\right)$ can be done. Idea: Use alphabets $\Sigma=X \dot{U} \Delta_{n}$ of letters X and brackets Δ_{n}, and languages over Σ in which letters commute with brackets.

Let $\Delta_{n}=P_{n} \cup \dot{U} Q_{n}$, for $P_{n}=\left\{p_{0}, \ldots, p_{n-1}\right\}, Q_{n}=\left\{q_{0}, \ldots, q_{n-1}\right\}$, and $\left(\Delta_{n}^{*}\right)_{0}$ the extension of Δ_{n}^{*} by an annihilating element 0 .

The polycyclic monoid P_{n}^{\prime} is the quotient monoid $\left(\Delta_{n}^{*}\right)_{0} / \rho_{n}$ where

$$
\rho_{n}=\left\{p_{i} q_{i}=1 \mid i<n\right\} \cup\left\{p_{i} q_{j}=0 \mid i, j<n, i \neq j\right\} .
$$

In P_{n}^{\prime} each $w \in \Delta_{n}^{*}$ has a normal form

$$
n f(w) \in\{0\} \cup Q_{n}^{*} P_{n}^{*},
$$

obtained by cancelling matching brackets $p_{i} q_{i}=1$ (resp. $p_{i} q_{j}=0$).

The normal form $n f(w)$ represents the element w / ρ_{n} of P_{n}^{\prime}. Hence

$$
P_{n}^{\prime} \simeq\left(Q_{n}^{*} P_{n}^{*} \cup\{0\}, \cdot, 1\right) \quad \text { with } u \cdot v=n f(u v)
$$

This extends to $X^{*}\left[\Delta_{n}\right]_{0}$ where letters commute with brackets, and $n f$ commutes p_{i} to the right, q_{j} to the left, and applies $p_{i} q_{j}=\delta_{i, j}$:

$$
\begin{aligned}
X^{*} \times P_{n}^{\prime} & :=X^{*}\left[\Delta_{n}\right]_{0} /\left(\rho_{n} \cup\left\{w t=t w \mid w \in X^{*}, t \in \Delta_{n}\right\}\right) \\
& \simeq\left(Q_{n}^{*} X^{*} P_{n}^{*} \cup\{0\}, \cdot, 1\right) \quad \text { with } u \cdot v=n f(u v)
\end{aligned}
$$

For new $p_{n}, q_{n}: R \subseteq X^{*}\left[\Delta_{n}\right] \Rightarrow n f\left(p_{n} R q_{n}\right) \backslash\{0\}=h_{X^{*}}\left(R \cap D_{X}\right)$.

The polycyclic \mathcal{R}-dioid C_{n}^{\prime} is an " \mathcal{R}-quotient" of $\mathcal{R} \Delta_{n}^{*}$ resp. $\mathcal{R} P_{n}^{\prime}$.
Then: lift $X^{*} \times P_{n}^{\prime}$ to an " \mathcal{R}-tensor product" $\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{n}^{\prime}$ of $\mathcal{R} X^{*}$ and C_{n}^{\prime} where $A \in \mathcal{R} X^{*}$ and (the quotient of) $B \in \mathcal{R} P_{n}^{\prime}$ commute.

An \mathcal{A}-congruence on an \mathcal{A}-dioid D is a dioid-congruence ρ s.th. for all $U, V \in \mathcal{A} D$, if $(U / \rho)^{\downarrow}=(V / \rho)^{\downarrow}$, then $\left(\sum U\right) / \rho=\left(\sum V\right) / \rho$.

Prop. If D is an \mathcal{A}-dioid and ρ an \mathcal{A}-congruence on D, then D / ρ is an \mathcal{A}-dioid and the canonical map $d \mapsto d / \rho$ is an \mathcal{A}-morphism.

For any $E \subseteq D \times D$, there is a least \mathcal{A}-congruence $\rho \supseteq E$ on D.

The polycyclic \mathcal{R}-dioid C_{n}^{\prime} is $\mathcal{R} \Delta_{n}^{*} / \rho_{n}$, with \mathcal{R}-congruence ρ_{n} by

$$
\left\{p_{i}\right\}\left\{q_{i}\right\}=\{1\}, \quad\left\{p_{i}\right\}\left\{q_{j}\right\}=\emptyset, \quad(i \neq j)
$$

For $A \in \mathcal{R} \Delta_{n}^{*}, A / \rho_{n} \in C_{n}^{\prime}$ is represented by $\{n f(w) \mid w \in A\} \backslash\{0\}$.

Prop. $C_{n}^{\prime} \simeq \mathcal{R} P_{n}^{\prime} /(\{0\}=\emptyset) \quad$ where $P_{n}^{\prime} \simeq\left(Q_{n}^{*} P_{n}^{*} \cup\{0\}, \cdot, 1\right)$.

The Tensor Product $D_{1} \otimes_{\mathcal{A}} D_{2}$ of \mathcal{A}-Dioids

In a category \mathbb{C} with reducts in \mathbb{M}, a tensor product of M_{1}, M_{2}, consists of an object $M_{1} \otimes M_{2}$ with two commuting ${ }^{1}$ morphisms

$$
\top_{1}: M_{1} \rightarrow M_{1} \otimes M_{2} \leftarrow M_{2}: \top_{2}
$$

such that any pair $f: M_{1} \rightarrow M \leftarrow M_{2}: g$ of commuting morphisms decompose with a unique induced morphism $h_{f, g}$ as shown:

${ }^{1}$ i.e. $\top_{1}(a) \top_{2}(b)=\top_{2}(b) \top_{1}(a)$ for all $a \in M_{1}, b \in M_{2}$

Theorem (MH,HL 2018)

The tensor product $D_{1} \otimes_{\mathcal{A}} D_{2}$ of \mathcal{A}-dioids D_{1}, D_{2} consists of

- $D_{1} \otimes_{\mathcal{A}} D_{2}=\mathcal{A}\left(M_{1} \times M_{2}\right) / \equiv$, where M_{i} is the multiplicative monoid of D_{i} and \equiv is the least \mathcal{A}-congruence s.th.

$$
\left\{\left(\sum A, \sum B\right)\right\} \equiv A \times B, \quad \text { for all } A \in \mathcal{A} M_{1}, B \in \mathcal{A} M_{2}
$$

- the commuting morphisms $\top_{1}: D_{1} \rightarrow D_{1} \otimes_{\mathcal{A}} D_{2} \leftarrow D_{2}: \top_{2}$,

$$
a \mapsto\{(a, 1)\} / \equiv \text { and } b \mapsto\{(1, b)\} / \equiv, \quad \text { for } a \in D_{1}, b \in D_{2} .
$$

The induced morphism of $f: D_{1} \rightarrow D \leftarrow D_{2}: g$ is

$$
h_{f, g}(U / \equiv)=\sum\{f(a) g(b) \mid(a, b) \in U\}, \quad U \in \mathcal{A}\left(M_{1} \times M_{2}\right)
$$

Notation: $a \otimes b:=T_{1}(a) T_{2}(b)=\{(a, b)\} / \equiv$

$$
[U]:=U / \equiv \quad=\sum\{a \otimes b \mid(a, b) \in U\}
$$

Algebraic Representation of the \mathcal{C}-Completion

For \mathcal{A}-dioids D, C, the centralizer of C in $D \otimes_{\mathcal{A}} C$ is

$$
\begin{aligned}
& Z_{C}\left(D \otimes_{\mathcal{A}} C\right) \\
& \quad:=\left\{\varphi \in D \otimes_{\mathcal{A}} C \mid \varphi(1 \otimes c)=(1 \otimes c) \varphi \text { for all } c \in C\right\} .
\end{aligned}
$$

This is an \mathcal{A}-dioid, by properties of $\sum: \mathcal{A}\left(D \otimes_{\mathcal{A}} C\right) \rightarrow D \otimes_{\mathcal{A}} C$.
Lemma For \mathcal{R}-dioid K,

$$
Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)=\left\{[R] \mid R \in \mathcal{R}\left(K \times C_{2}^{\prime}\right), R \subseteq K \times\{0,1\}\right\} .
$$

Theorem (Algebraic representation of $Q_{\mathcal{R}}^{\mathcal{C}}(\mathcal{R M})=\mathcal{C M}$)
For each monoid $M, \quad \mathcal{C M} \simeq Z_{C_{2}^{\prime}}\left(\mathcal{R} M \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$.

Proof: (using $M=X^{*}$)

1. For each $L \in \mathcal{C} M$, its elem.wise image has a least upper bound

$$
\widehat{L}:=\sum\{\{m\} \otimes 1 \mid m \in L\} \in Z_{C_{2}^{\prime}}\left(\mathcal{R} M \otimes_{\mathcal{R}} C_{2}^{\prime}\right)
$$

Prf.: For $L \in \mathcal{C} X^{*}$ there is $R \in \mathcal{R}\left(X^{*}\left[\Delta_{n}\right]\right)$ with $L=h_{X^{*}}\left(R \cap D_{X}\right)$.
Code brackets p_{i}, q_{i} of Δ_{n} by the two pairs b, d and p, q of Δ_{2} via

$$
\overline{p_{i}}:=b p^{i+1} \in P_{2}^{*} p, \quad \overline{q_{i}}:=q^{i+1} d \in q Q_{2}^{*} .
$$

So in $P_{2}^{\prime}: \overline{p_{i}} \overline{q_{j}}=\delta_{i, j}$ and $b \overline{q_{i}}=0=\overline{p_{i}} d$, hence $b \overline{Q_{n}^{*}} \overline{P_{n}^{*}} d=\{0,1\}$.
For $w \in X^{*}\left[\Delta_{n}\right]$:

$$
\begin{aligned}
& w \in D_{X} \Longleftrightarrow h_{\Delta_{n}^{*}}(w) / \rho_{n}=1 \Longleftrightarrow b \overline{h_{\Delta_{n}^{*}}(w)} d / \rho_{2}=1, \\
& w \notin D_{X} \Longleftrightarrow h_{\Delta_{n}^{*}}(w) / \rho_{n} \neq 1 \Longleftrightarrow b \overline{h_{\Delta_{n}^{*}}(w)} d / \rho_{2}=0 .
\end{aligned}
$$

Let $h: X^{*}\left[\Delta_{n}\right] \rightarrow \mathcal{R} X^{*} \times \mathcal{R} \Delta_{2}^{*} / \rho_{2}$ be the homomorphism

$$
w \mapsto\left(\left\{h_{X^{*}}(w)\right\},\left\{\overline{h_{\Delta_{n}^{*}}(w)}\right\} / \rho_{2}\right)
$$

Then $\mathcal{R} h$ maps $R \in \mathcal{R}\left(X^{*}\left[\Delta_{n}\right]\right)$ to some $R^{\prime} \in \mathcal{R}\left(\mathcal{R} X^{*} \times C_{2}^{\prime}\right)$, so

$$
U:=\left\{\left(\{1\},\{b\} / \rho_{2}\right)\right\} \cdot R^{\prime} \cdot\left\{\left(\{1\},\{d\} / \rho_{2}\right)\right\} \in \mathcal{R}\left(\mathcal{R} X^{*} \times C_{2}^{\prime}\right)
$$

and $[U]=\sum\left\{\left\{h_{X^{*}}(w)\right\} \otimes\left\{b \overline{h_{\Delta_{2}^{*}}(w)} d\right\} / \rho_{2} \mid w \in R\right\}$

$$
\begin{aligned}
& =\sum\left\{\left\{h_{X^{*}}(w)\right\} \otimes 1 \mid w \in R \cap D_{X}\right\} \quad(\{m\} \otimes 0=0) \\
& =\sum\{\{m\} \otimes 1 \mid m \in L\}=\widehat{L} .
\end{aligned}
$$

Since $U \subseteq \mathcal{R} X^{*} \times\{0,1\}$, by the Lemma, $[U] \in Z_{C_{2}^{\prime}}\left(\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$.
Then show
2. (Algebraic CST) $\hat{\cdot}: \mathcal{C} M \rightarrow Z_{C_{2}^{\prime}}\left(\mathcal{R} M \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ is injective.
3. (Algebraic ReverseCST) The map $[R] \mapsto[R]^{\vee}$ given by

$$
[R]^{\vee}:=\bigcup\{A \mid(A, 1) \in R\}, \quad \text { for } R \in \mathcal{R}\left(\mathcal{R} M \times C_{2}^{\prime}\right)
$$

is an injective map $\cdot^{\vee}: Z_{C_{2}^{\prime}}\left(\mathcal{R} M \otimes_{\mathcal{R}} C_{2}^{\prime}\right) \rightarrow \mathcal{C} M$.
4. $\hat{\cdot}$ and $\cdot{ }^{\vee}$ are inverse to each other and homomorphisms.
5. $Z_{C_{2}^{\prime}}\left(\mathcal{R} M \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ is a \mathcal{C}-dioid, $\hat{.}$ and $\cdot{ }^{\vee}$ are \mathcal{C}-morphisms.

Each element of $\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$ is the value of a regular expression $r \in \operatorname{Reg} \operatorname{Exp}\left(X \dot{\cup} \Delta_{2}\right)$ in the generators X and Δ_{2} of $C_{2}^{\prime}=\mathcal{R} \Delta_{2}^{*} / \rho_{2}$.

Theorem (Algebraic representation of $Q_{\mathcal{R}}^{\mathcal{C}}(K)$ for $K \in \mathbb{D} \mathcal{R}$)

For each *-continuous Kleene algebra K,

- $Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ is a \mathcal{C}-dioid, i.e. μ-continuous Chomsky algebra,
- $Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ is the \mathcal{C}-completion $Q_{\mathcal{R}}^{\mathcal{C}}(K)$ of K.

Corollary

For any $K \in \mathbb{D R}$, there is a \mathcal{C}-morphism $\widehat{\cdot}: \mathcal{C K} \rightarrow Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$,
$\widehat{L}:=\sum\{m \otimes 1 \mid m \in L\}$, such that $\mathcal{C} K / \operatorname{ker}(\uparrow) \simeq Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$.

The "categorical Chomsky-Schützenberger Theorem" is

$$
Q_{\mathcal{R}}^{\mathcal{D}}(K) \subsetneq Z_{C_{2}^{\prime}}\left(K \otimes_{\mathcal{R}} C_{2}^{\prime}\right),
$$

the analoge of the CST $\mathcal{C} X^{*} \subseteq\left\{h_{X^{*}}\left(R \cap D_{X}\right) \mid R \in \mathcal{R}\left(X^{*}\left[\Delta_{2}\right]\right)\right\}$.

Application: Regular expressions for context-free languages
Let $L=\left\{a^{n} c b^{n} \mid n \in \mathbb{N}\right\} \in \mathcal{C} X^{*}$ and $\Delta_{2}=\{\langle 0|,|0\rangle,\langle 1|,|1\rangle\}$.
For $w \in X^{*}$ and $t \in \Delta_{2}^{*}$ write $w t$ for $\{w\} \otimes\{t\} / \rho_{2} \in \mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}$.

$$
\begin{aligned}
\langle 0|(a\langle 1|)^{*} c(|1\rangle b)^{*}|0\rangle & =\sum_{n, m \in \mathbb{N}}\langle 0|(a\langle 1|)^{n} c(|1\rangle b)^{m}|0\rangle \quad\left({ }^{*}\right. \text {-continuity) } \\
& =\sum_{n, m \in \mathbb{N}} a^{n} c b^{m} \underbrace{\langle 0|\left\langle\left. 1\right|^{n} \mid 1\right\rangle^{m}|0\rangle}_{\delta_{n, m}} \quad(x, t \text { commute) } \\
& =\sum_{n \in \mathbb{N}} a^{n} c b^{n}=\widehat{L}=[U] \text { for }
\end{aligned}
$$

$U=\left\{\left(\left\{a^{n} c b^{m}\right\},\left\{\langle 0|\left\langle\left. 1\right|^{n} \mid 1\right\rangle^{m}|0\rangle\right\} / \rho_{2}\right) \mid n, m \in \mathbb{N}\right\} \in \mathcal{R}\left(\mathcal{R} X^{*} \times C_{2}^{\prime}\right)$.

Elements of $Z_{C_{2}^{\prime}}\left(\mathcal{R} X^{*} \otimes_{\mathcal{R}} C_{2}^{\prime}\right)$ are those $\langle 0| r|0\rangle$ where r has $\langle 0|,|0\rangle$ only in codes $\overline{p_{i}}=\langle 0|\left\langle\left. 1\right|^{i+1}, \overline{q_{i}}=\mid 1\right\rangle^{i+1}|0\rangle$ of other brackets p_{i}, q_{i}.

CST-proof: $C F \ni G \mapsto r_{G} \in \operatorname{Reg} E x p$ with $L(G)=h_{X^{*}}\left(L\left(r_{G}\right) \cap D_{X}\right)$
CF-grammar:

$$
y \geq a y b+c
$$

$$
L=\left\{a^{n} c b^{n} \mid n \in \mathbb{N}\right\} \in \mathcal{C} X^{*}
$$

wrap rhs variables by brackets:

$$
y \geq a\langle 1| y|1\rangle b+c
$$

$$
L_{\Delta}=\left\{(a\langle 1|)^{n} c(|1\rangle b)^{n} \mid n \in \mathbb{N}\right\}
$$

add continuation variables y_{F} :

$$
\begin{aligned}
y & \geq a\langle 1| y|1\rangle b y_{F}+c y_{F} \\
y_{F} & \geq 1
\end{aligned}
$$

break into right-linear initial- and follow-factors:

$$
\begin{array}{rccc}
y & \geq a\langle 1| y+c y_{F} & R=(a\langle 1|)^{*} c(|1\rangle b)^{*} \in \mathcal{R}\left(X^{*}[\Delta]\right) \\
y_{F} \geq 1+|1\rangle b y_{F} & L_{\Delta}=R \cap D_{X}
\end{array}
$$

We constructed a *-continuous Kleene algebra $K \supseteq \mathcal{C} X^{*}$ s.th.

$$
L=\mu y(a y b+c)^{c X^{*}} \simeq\langle 0|(a\langle 1|)^{*} c(|1\rangle b)^{*}|0\rangle^{K} .
$$

Open Problems

1. Application in parser generation and compilation, e.g.

- automata of $\langle 0| r_{G}|0\rangle$ for parsing with CFG G
- μ-terms of depth n vs. $D y c k_{n}$, balanced brackets of depth n

2. Which $\mathbb{D} \mathcal{A}$ are closed under $n \times n$-matrix semiring formation ?
3. A similar algebra of "Turing-expressions" for $\mathcal{T} X^{*}$ in $\mathbb{D} \mathcal{T}$?
4. A context-sensitive cat. $\mathbb{D} \mathcal{S}$ with "non-erasing"-homorphisms?

國 M．Hopkins．The algebraic approach I：The algebraization of the Chomsky hierarchy．II：Dioids，quantales and monads． In Proc．Relational Methods in Computer Science／Applications of Kleene Algebra，LNCS 4988，pp．155－190．Springer 2008.

囯 M．Hopkins and H．Leiß．Coequalizers and tensor products for continuous idempotent semirings．
In Proc．17th Int．Conf．on Relational and Algebraic Methods in Computer Science，LNCS 11194，37－52．Springer 2018.

围 H．Leiß．An algebraic representation of the fixed－point closure of＊－continuous Kleene algebras．
Mathematical Structures in Computer Science vol．32， 2022 https：／／www．cis．uni－muenchen．de／～leiss／ MSCS－2020－072．R2．rev279．pdf（submitted version）
R H．Leiß and M．Hopkins．C－dioids and μ－continuous Chomsky algebras．
In Proc．17th Int．Conf．on Relational and Algebraic Methods in Computer Science，RAMiCS 2018，21－36．Springer 2018.

