Towards a Theory of Conversion Relations for Prefixed Units of Measure

- Baltasar Trancón y Widemann ${ }^{12}$ Markus Lepper ${ }^{2}$
${ }^{1}$ Nordakademie, Elmshorn, DE
${ }^{2}$ semantics gGmbH, Berlin, DE

RAMiCS XX
2023-04-03//06

Agenda

(1) Introduction
(2) Unit Algebra
(3) Conversion Relations
4) Conclusion

Agenda

(1) Introduction

2 Unit Algebra
(3) Conversion Relations
4. Conclusion

Motivation: A Famous Disaster

Metric Math Mistake Muffed Mars Meteorology Mission

"Nov. 10, 1999: A disaster investigation board reports that NASA's Mars Climate Orbiter burned up in the Martian atmosphere because engineers failed to convert units from English to metric. The peer review preliminary findings indicate that one team used English units (e.g. inches, feet and pounds) while the other used metric units for a key spacecraft operation."

Cost: 328 M\$

Bottom-Up Evaluation

- Solution is easy in theory:
- Detect the inconsistency - pound-force given, newton expected;
- Multiply by 4.4482216152605 .

Bottom-Up Evaluation

- Solution is easy in theory:
- Detect the inconsistency - pound-force given, newton expected;
- Multiply by 4.4482216152605 .

■ Support is bad in practice:

- Many tools (libraries, checkers) available.
- Current methodology does not specify units in code yet.

Bottom-Up Evaluation

- Solution is easy in theory:
- Detect the inconsistency - pound-force given, newton expected;
- Multiply by 4.4482216152605 .

■ Support is bad in practice:
■ Many tools (libraries, checkers) available.

- Current methodology does not specify units in code yet.

■ Theoretical foundations are deficient.

Top-Down Evaluation

■ There is no consensus on requirements:

- Recent survey [MBBS20] identified 296 libraries and 95 tools (OSS only).
- Functionalities are not nearly pairwise equivalent.
- Some are clearly unsound.

Top-Down Evaluation

■ There is no consensus on requirements:

- Recent survey [MBBS20] identified 296 libraries and 95 tools (OSS only).
- Functionalities are not nearly pairwise equivalent.
- Some are clearly unsound.

■ Nearly all abstractions are operational:

- Including ISO 80000
- Prescriptive rules for notation, pronounciation, calculation
- No method for objective justification
- No distinction between

■ logical necessities,

- contingent (historical) conventions,

■ outright idiosyncrasies

Our Contributions

■ A novel denotational approach:

- Compatible with, but orthogonal to [Ken96]
- Algebraic-relational formal model of units of measure and their conversion
- Semantics for future tools
- Operational rules justified by deduction

Our Contributions

■ A novel denotational approach:

- Compatible with, but orthogonal to [Ken96]
- Algebraic-relational formal model of units of measure and their conversion
- Semantics for future tools
- Operational rules justified by deduction
- Epistemological cleanup:

Abstract logical necessities
Parameterize by contingent conventions
Rectify outright idiosyncrasies

Theoretical Language

- Simple denotational objects:
- Free abelian groups, direct sums
- Relations, congruences

Theoretical Language

- Simple denotational objects:

■ Free abelian groups, direct sums

- Relations, congruences

■ Cleanup by virtue of (basic) category theory: Parameterization functors

Abstraction adjoints, natural transformations
Rectification monads, syntax-semantics distinction

Theoretical Language

- Simple denotational objects:

■ Free abelian groups, direct sums
■ Relations, congruences
■ Cleanup by virtue of (basic) category theory: Parameterization functors

Abstraction adjoints, natural transformations
Rectification monads, syntax-semantics distinction
■ Not theory of R\&A, but theory by R\&A!

Example Symptoms

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".

Example Symptoms

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions; e.g. are, $a=d a m^{2}$, cannot be expanded in the compound hectare, ha.

Example Symptoms

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions; e.g. are, $\mathrm{a}=\mathrm{dam}^{2}$, cannot be expanded in the compound hectare, ha.
(3) ISO 80000-1 defines $\mathrm{rad}=\mathrm{m} / \mathrm{m}$ and $\mathrm{sr}=\mathrm{m}^{2} / \mathrm{m}^{2}$, but treats them as different from each other, and from 1.

Example Symptoms

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes "1 as a derived unit".
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions; e.g. are, $\mathrm{a}=\mathrm{dam}^{2}$, cannot be expanded in the compound hectare, ha.
(3) ISO 80000-1 defines $\mathrm{rad}=\mathrm{m} / \mathrm{m}$ and $\mathrm{sr}=\mathrm{m}^{2} / \mathrm{m}^{2}$, but treats them as different from each other, and from 1.
(9) The SI prefix families are geometric sequences (welcome ronna- and quetta- in 2022!), but cannot be written as powers of a generator.

Example Symptoms

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes "1 as a derived unit".
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions; e.g. are, $a=d a m^{2}$, cannot be expanded in the compound hectare, ha.
(3) ISO 80000-1 defines $\mathrm{rad}=\mathrm{m} / \mathrm{m}$ and $\mathrm{sr}=\mathrm{m}^{2} / \mathrm{m}^{2}$, but treats them as different from each other, and from 1.
(9) The SI prefix families are geometric sequences (welcome ronna- and quetta- in 2022!), but cannot be written as powers of a generator.
(Tools tend to specify conversion by way of one canonical unit per dimension. As a result, e.g., newton-meter \rightsquigarrow joule, gray \rightsquigarrow sievert, and even revolutions-per-minute \leadsto becquerel end up convertible.

Committee Confusion

The 16th Conférence Générale des Poids et Mesures,

considering

■ the effort made to introduce SI units into the field of ionizing radiations,
■ the risk to human beings of an underestimated radiation dose, a risk that could result from a confusion between absorbed dose and dose equivalent,
■ that the proliferation of special names represents a danger for the Système International d'Unités and must be avoided in every possible way, but that this rule can be broken when it is a matter of safeguarding human health,
adopts the special name sievert, symbol Sv , for the SI unit of dose equivalent in the field of radioprotection.

Committee Confusion

The 16th Conférence Générale des Poids et Mesures,

considering

■ the effort made to introduce SI units into the field of ionizing radiations,
■ the risk to human beings of an underestimated radiation dose, a risk that could result from a confusion between absorbed dose and dose equivalent,

- that the proliferation of special names represents a danger for the Système International d'Unités and must be avoided in every possible way, but that this rule can be broken when it is a matter of safeguarding human health,
adopts the special name sievert, symbol Sv , for the SI unit of dose equivalent in the field of radioprotection.
The sievert is equal to the joule per kilogram.
[CGPM16.5]

Paper Confusion

To convert between measurements in different units of the same dimension, we must specify conversion factors between various units of that dimension. A natural place to keep this information is in the definition of a unit: each unit specifies how to convert measurements in that unit to measurements in any other defined unit (for the same dimension).

Paper Confusion

To convert between measurements in different units of the same dimension, we must specify conversion factors between various units of that dimension. A natural place to keep this information is in the definition of a unit: each unit specifies how to convert measurements in that unit to measurements in any other defined unit (for the same dimension).
Although the number of such conversion factors is quadratic in the number of units, it is not necessary to maintain so many factors explicitly: if we can convert between measurements in units A and B, and between measurements in units B and C, then we can convert between measurements in A and C via B. Thus, it is sufficient to include in the definition of every unit a single conversion factor to a primary unit of that dimension, and convert between any two commensurable units via their common primary unit.

$$
[\mathrm{AlI}+04]
$$

Tool Confusion

```
丹
baltasar@haferflocke: ~
Q \equiv - व x
baltasar@haferflocke: $ units
Currency exchange rates from FloatRates (USD base) on 2020-11-15
3 6 7 7 \text { units, 109 prefixes, 114 nonlinear units}
You have: [
```


Tool Confusion

```
fl
baltasar@haferflocke: $ units
Currency exchange rates from FloatRates (USD base) on 2020-11-15
3 6 7 7 \text { units, 109 prefixes, 114 nonlinear units}
You have: rpm
You want: becquerel
    * 0.10471976
    / 9.5492966
You have:
        \square
```


Agenda

(1) Introduction

(2) Unit Algebra

(3) Conversion Relations

4. Conclusion

Semantic Sorts

Ratio e.g. $\frac{1000}{1}, \frac{5}{9}, 568.26125, \ldots$
Prefix e.g. k, M, G, ...
Unit e.g. m, N, Hz, ...
Dimension e.g. $\mathrm{T}, \mathrm{M}, \mathrm{I}, \ldots$

Free Abelian Groups

■ Free abelian group $\mathcal{A}(X)$ over generator set X

Free Abelian Groups

■ Free abelian group $\mathcal{A}(X)$ over generator set X

- Represented as finitely supported maps $X \rightarrow \mathbb{Z}$

■ Example: $\{a \mapsto 2, b \mapsto 1, c \mapsto-3\}_{/ 0}$

- Group operation pointwise additive, ...
- but commonly written as multiplicative, e.g. $a^{2} \cdot b / c^{3}$
- Danger of confusion: $1=\varnothing_{/ 0}=a^{0} b^{0} c^{0} \ldots$

Free Abelian Groups

■ Free abelian group $\mathcal{A}(X)$ over generator set X
■ Represented as finitely supported maps $X \rightarrow \mathbb{Z}$

- Example: $\{a \mapsto 2, b \mapsto 1, c \mapsto-3\}_{/ 0}$
- Group operation pointwise additive, ...
- but commonly written as multiplicative, e.g. $a^{2} \cdot b / c^{3}$
- Danger of confusion: $1=\varnothing_{/ 0}=a^{0} b^{0} c^{0} \ldots$

■ Functor \mathcal{A} is free - left-adjoined to forgetful functor $\mathcal{U}: \mathbf{A b} \rightarrow$ Set

Free Abelian Groups

- Free abelian group $\mathcal{A}(X)$ over generator set X
- Represented as finitely supported maps $X \rightarrow \mathbb{Z}$

■ Example: $\{a \mapsto 2, b \mapsto 1, c \mapsto-3\}_{/ 0}$

- Group operation pointwise additive, ...
- but commonly written as multiplicative, e.g. $a^{2} \cdot b / c^{3}$
- Danger of confusion: $1=\varnothing_{/ 0}=a^{0} b^{0} c^{0} \ldots$

■ Functor \mathcal{A} is free - left-adjoined to forgetful functor $\mathcal{U}: \mathbf{A b} \rightarrow$ Set

- Unit $\delta_{X}: X \rightarrow \mathcal{U A}(X)$
- atomic elements: e.g. $\delta(a)=a^{1}$

Free Abelian Groups

■ Free abelian group $\mathcal{A}(X)$ over generator set X
■ Represented as finitely supported maps $X \rightarrow \mathbb{Z}$
■ Example: $\{a \mapsto 2, b \mapsto 1, c \mapsto-3\}_{/ 0}$

- Group operation pointwise additive, ...
- but commonly written as multiplicative, e.g. $a^{2} \cdot b / c^{3}$
- Danger of confusion: $1=\varnothing_{/ 0}=a^{0} b^{0} c^{0} \ldots$

■ Functor \mathcal{A} is free - left-adjoined to forgetful functor $\mathcal{U}: \mathbf{A b} \rightarrow$ Set

- Unit $\delta_{X}: X \rightarrow \mathcal{U A}(X)$
- Counit $\varepsilon_{G}: \mathcal{A} \mathcal{U}(G) \rightarrow G$
- atomic elements: e.g. $\delta(a)=a^{1}$
- evaluate group expressions

Free Abelian Groups

■ Free abelian group $\mathcal{A}(X)$ over generator set X

- Represented as finitely supported maps $X \rightarrow \mathbb{Z}$

■ Example: $\{a \mapsto 2, b \mapsto 1, c \mapsto-3\}_{/ 0}$

- Group operation pointwise additive, ...
- but commonly written as multiplicative, e.g. $a^{2} \cdot b / c^{3}$
- Danger of confusion: $1=\varnothing_{/ 0}=a^{0} b^{0} c^{0} \ldots$

■ Functor \mathcal{A} is free - left-adjoined to forgetful functor $\mathcal{U}: \mathbf{A b} \rightarrow$ Set

- Unit $\delta_{X}: X \rightarrow \mathcal{U A}(X)$
- Counit $\varepsilon_{G}: \mathcal{A} \mathcal{U}(G) \rightarrow G$
- Monad multiplication $\lambda_{x}: \mathcal{U A}^{2}(X) \rightarrow \mathcal{U} \mathcal{A}(X)$ - atomic elements: e.g. $\delta(a)=a^{1}$
- evaluate group expressions
- flatten: e.g. $\lambda\left(\left(a^{3}\right)^{2}\right)=a^{6}$

Direct Sum

- Direct sum $G_{1} \times G_{2}$ of pair of abelian groups
- Cartesian product of carrier sets
- All operations elementwise

Direct Sum

- Direct sum $G_{1} \times G_{2}$ of pair of abelian groups
- Cartesian product of carrier sets
- All operations elementwise
$\square \times$ is a product - right-adjoined to diagonal functor $\Delta: \mathbf{A b} \rightarrow \mathbf{A b}^{2}$

Direct Sum

- Direct sum $G_{1} \times G_{2}$ of pair of abelian groups
- Cartesian product of carrier sets
- All operations elementwise
$■ \times$ is a product - right-adjoined to diagonal functor $\Delta: \mathbf{A b} \rightarrow \mathbf{A b}{ }^{2}$
■ Projections $\pi_{i}: G_{1} \times G_{2} \rightarrow G_{i} \quad-$ e.g. $\pi_{1}(7,4)=7$

Direct Sum

- Direct sum $G_{1} \times G_{2}$ of pair of abelian groups
- Cartesian product of carrier sets
- All operations elementwise
$\square \times$ is a product - right-adjoined to diagonal functor $\Delta: \mathbf{A b} \rightarrow \mathbf{A b}{ }^{2}$
\square Projections $\pi_{i}: G_{1} \times G_{2} \rightarrow G_{i} \quad-$ e.g. $\pi_{1}(7,4)=7$
- Pairing $\left\langle f_{1}, f_{2}\right\rangle: G \rightarrow H_{1} \times H_{2}$ from $f_{i}: G \rightarrow H_{i} \quad-e . g .\langle$ div, $\bmod \rangle(7,4)=(1,3)$

Direct Sum

- Direct sum $G_{1} \times G_{2}$ of pair of abelian groups
- Cartesian product of carrier sets
- All operations elementwise
$■ \times$ is a product - right-adjoined to diagonal functor $\Delta: \mathbf{A b} \rightarrow \mathbf{A b}{ }^{2}$
- Projections $\pi_{i}: G_{1} \times G_{2} \rightarrow G_{i}$ - e.g. $\pi_{1}(7,4)=7$

■ Pairing $\left\langle f_{1}, f_{2}\right\rangle: G \rightarrow H_{1} \times H_{2}$ from $f_{i}: G \rightarrow H_{i} \quad-e . g .\langle\operatorname{div}, \bmod \rangle(7,4)=(1,3)$

- Fixing G_{1} yields a monad (monoid labeling)

$$
\eta(x)=(1, x) \quad \mu(a,(b, x))=(a b, x)
$$

Composition of Monads

■ Create model structures by composing monads:

- Composition of monads need not be another monad.
- Sufficient condition: distributive law

Composition of Monads

■ Create model structures by composing monads:
\square Composition of monads need not be another monad.

- Sufficient condition: distributive law

■ Canonical homomorphism $\beta_{G, X}: \mathcal{U} \mathcal{A}(G \times X) \rightarrow G \times \mathcal{U} \mathcal{A}(X)$

Composition of Monads

■ Create model structures by composing monads:

- Composition of monads need not be another monad.

■ Sufficient condition: distributive law
■ Canonical homomorphism $\beta_{G, X}: \mathcal{U} \mathcal{A}(G \times X) \rightarrow G \times \mathcal{U} \mathcal{A}(X)$
■ ($G \times$) $\circ \mathcal{U} \mathcal{A}$ is an adequate model of unit semantics.
■ Composite monad by virtue of β

Composition of Monads

■ Create model structures by composing monads:

- Composition of monads need not be another monad.
- Sufficient condition: distributive law
- Canonical homomorphism $\beta_{G, X}: \mathcal{U A}(G \times X) \rightarrow G \times \mathcal{U} \mathcal{A}(X)$
- $(G \times) \circ \mathcal{U A}$ is an adequate model of unit semantics.
- Composite monad by virtue of β
- $\mathcal{U A} \circ(G \times)$ is an accurate model of unit syntax.
- Likely not a suitable monad - no group-friendly distributive law exists;
- but maps naturally to the former by virtue of β.
- Still useful: composite unit $\lfloor\mathrm{l}=\delta \eta$

Big Picture

Big Picture

P_{b}
U_{b}
D_{b}

Big Picture

Big Picture

Big Picture

\qquad

Big Picture

\qquad

Big Picture

Agenda

(1) Introduction
(2) Unit Algebra
(3) Conversion Relations
4. Conclusion

Conversion Relations

■ Goal: specify conversion factors in a way that privileges no unit.

Conversion Relations

■ Goal: specify conversion factors in a way that privileges no unit.
■ A unit conversion is a ternary relation obeying two axioms:

$$
C \subseteq U \times Q \times U
$$

(1) Codimensionality
(2) Functionality

$$
\begin{aligned}
& (u, r, v) \in C \Longrightarrow \operatorname{dim}(u)=\operatorname{dim}(v) \\
& (u, r, v),\left(u, r^{\prime}, v\right) \in C \Longrightarrow r=r^{\prime}
\end{aligned}
$$

Conversion Relations

■ Goal: specify conversion factors in a way that privileges no unit.
■ A unit conversion is a ternary relation obeying two axioms:

$$
C \subseteq U \times Q \times U
$$

(1) Codimensionality

$$
\begin{aligned}
& (u, r, v) \in C \Longrightarrow \operatorname{dim}(u)=\operatorname{dim}(v) \\
& (u, r, v),\left(u, r^{\prime}, v\right) \in C \Longrightarrow r=r^{\prime}
\end{aligned}
$$

■ Write $u \xrightarrow{r} c v$ for $(u, r, v) \in C$, alluding to categorial diagrams.

Conversion Relations

■ Goal: specify conversion factors in a way that privileges no unit.

- A unit conversion is a ternary relation obeying two axioms:

$$
C \subseteq U \times Q \times U
$$

(1) Codimensionality

$$
\begin{aligned}
& (u, r, v) \in C \Longrightarrow \operatorname{dim}(u)=\operatorname{dim}(v) \\
& (u, r, v),\left(u, r^{\prime}, v\right) \in C \Longrightarrow r=r^{\prime}
\end{aligned}
$$

\square Write $u \xrightarrow{r} c v$ for $(u, r, v) \in C$, alluding to categorial diagrams.
■ Every triple denotes a rewriting rule: "one u is r vs".

$$
x u=x(r v)=(x r) v
$$

Conversion Relations

■ Goal: specify conversion factors in a way that privileges no unit.
■ A unit conversion is a ternary relation obeying two axioms:

$$
C \subseteq U \times Q \times U
$$

(1) COdImensionality

$$
\begin{aligned}
& (u, r, v) \in C \Longrightarrow \operatorname{dim}(u)=\operatorname{dim}(v) \\
& (u, r, v),\left(u, r^{\prime}, v\right) \in C \Longrightarrow r=r^{\prime}
\end{aligned}
$$

\square Write $u \xrightarrow{r} c v$ for $(u, r, v) \in C$, alluding to categorial diagrams.
■ Every triple denotes a rewriting rule: "one u is r vs".

$$
x u=x(r v)=(x r) v
$$

■ Convertibility with factor 1 is called coherence:

$$
u \propto_{c} v \Longleftrightarrow u \xrightarrow{\exists r} c v \quad u \cong c v \Longleftrightarrow u \xrightarrow{1} c v
$$

Conversion Closure

■ The conversion closure of a relation C of the above type is the smallest relation $C^{*} \supseteq C$ obeying three axioms:
(3) MULTIPLICATION

$$
u_{1} \xrightarrow{r_{1}} C^{*} v_{1} \wedge u_{2} \xrightarrow{r_{2}} C^{*} v_{2} \Longrightarrow u_{1} u_{2} \xrightarrow{r_{1} r_{2}} C^{*} v_{1} v_{2}
$$

4 INVERSE
(5) DECOMPOSITION

$$
\begin{gathered}
u \stackrel{r}{\rightarrow}_{C^{*}} v \xrightarrow{\Longrightarrow} u^{-1} \xrightarrow{r^{-1}} C^{*} v^{-1} \\
u \xrightarrow{\operatorname{pval}(u)} C^{*} \operatorname{strip}(u)
\end{gathered}
$$

Conversion Closure

■ The conversion closure of a relation C of the above type is the smallest relation $C^{*} \supseteq C$ obeying three axioms:
(3) Multiplication

$$
u_{1} \xrightarrow{r_{1}} C^{*} v_{1} \wedge u_{2} \xrightarrow{r_{2}} C^{*} v_{2} \Longrightarrow u_{1} u_{2} \xrightarrow{r_{1} r_{2}} C^{*} v_{1} v_{2}
$$

(4) Inverse
(5) Decomposition

$$
\begin{gathered}
u \xrightarrow[\rightarrow]{C^{*}} v \xrightarrow{\Longrightarrow} u^{-1} \xrightarrow{r^{-1}} C^{*} v^{-1} \\
u \xrightarrow{\text { pval(} u)} C^{*} \operatorname{strip}(u)
\end{gathered}
$$

\square The closure of a unit conversion is not necessarily a unit conversion:

- Codimensionality is preserved, but contradictory factors $u \xrightarrow{r \neq r^{\prime}} C^{*} v$ can arise.
- Conversion closure lifts rewriting rules to compound units.

Special Cases

■ A conversion is called defining, iff left-hand sides are basic and unique:

$$
\begin{aligned}
& u \xrightarrow[\rightarrow]{r} c v \text { is of the form }\left\lfloor u_{0}\right\rfloor \xrightarrow[\rightarrow]{r} c v \\
& \left\lfloor u_{0}\right\rfloor \xrightarrow{r} c v \wedge\left\lfloor u_{0}\right\rfloor \xrightarrow{r^{\prime}} c v^{\prime} \Longrightarrow v=v^{\prime}
\end{aligned}
$$

Special Cases

■ A conversion is called defining, iff left-hand sides are basic and unique:

$$
\begin{aligned}
& u \xrightarrow[\rightarrow]{r} c v \text { is of the form }\left\lfloor u_{0}\right\rfloor \xrightarrow{r} c v \\
& \left\lfloor u_{0}\right\rfloor \xrightarrow{r} c v \wedge\left\lfloor u_{0}\right\rfloor \xrightarrow{r^{\prime}} c v^{\prime} \Longrightarrow v=v^{\prime}
\end{aligned}
$$

- A defining conversion induces a rewriting operation on U_{e}.
- A defining conversion C induces a semantic dependency order $>_{C}$ on U_{b} :

$$
\left\lfloor u_{0}\right\rfloor \propto_{C} v \wedge \text { supp root }(v) \ni v_{0} \Longrightarrow u_{0}>_{C} v_{0}
$$

Special Cases

■ A conversion is called defining, iff left-hand sides are basic and unique:

$$
\begin{aligned}
& u \xrightarrow[\rightarrow]{r} c v \text { is of the form }\left\lfloor u_{0}\right\rfloor \xrightarrow[\rightarrow]{r} c v \\
& \left\lfloor u_{0}\right\rfloor \xrightarrow{r} c v \wedge\left\lfloor u_{0}\right\rfloor \xrightarrow{r^{\prime}} c v^{\prime} \Longrightarrow v=v^{\prime}
\end{aligned}
$$

- A defining conversion induces a rewriting operation on U_{e}.
- A defining conversion C induces a semantic dependency order $>_{C}$ on U_{b} :

$$
\left\lfloor u_{0}\right\rfloor \propto_{C} v \wedge \operatorname{supp} \operatorname{root}(v) \ni v_{0} \Longrightarrow u_{0}>_{C} v_{0}
$$

$■$ A conversion is called well-defining, iff $>_{C}$ is well-founded.

Special Cases

■ A conversion is called defining, iff left-hand sides are basic and unique:

$$
\begin{aligned}
& u \xrightarrow[\rightarrow]{r} c v \text { is of the form }\left\lfloor u_{0}\right\rfloor \xrightarrow{r} c v \\
& \left\lfloor u_{0}\right\rfloor \xrightarrow{r} c v \wedge\left\lfloor u_{0}\right\rfloor \xrightarrow{r^{\prime}} c v^{\prime} \Longrightarrow v=v^{\prime}
\end{aligned}
$$

- A defining conversion induces a rewriting operation on U_{e}.
- A defining conversion C induces a semantic dependency order $>_{C}$ on U_{b} :

$$
\left\lfloor u_{0}\right\rfloor \propto_{C} v \wedge \text { supp root }(v) \ni v_{0} \Longrightarrow u_{0}>_{C} v_{0}
$$

\square A conversion is called well-defining, iff $>_{C}$ is well-founded.

- Rewriting on U_{e} terminates after a bounded number of steps.
- Definitions of SI units (e.g., ISO 80000-1) can be read as well-defining.

Conversion Hierarchy

- A conversion is called ...
(1) consistent iff its closure is again a conversion;
(2) closed iff it is its own closure;
(3) finitely generated iff it is the closure of a finite conversion;
(4) defined iff it is the closure of a defining conversion;
(5) well-defined iff it is the closure of a well-defining conversion;
(6) regular iff it is the closure of an empty conversion.

Conversion Hierarchy

- A conversion is called ...
(1) consistent iff its closure is again a conversion;
(2) closed iff it is its own closure;
(3) finitely generated iff it is the closure of a finite conversion;
(4) defined iff it is the closure of a defining conversion;
(5) well-defined iff it is the closure of a well-defining conversion;
(6) regular iff it is the closure of an empty conversion.

■ Each property in the conversion hierarchy entails the preceding.

Main Results

■ Consistency is explosive; contradiction anywhere \Longrightarrow everywhere.

Main Results

■ Consistency is explosive; contradiction anywhere \Longrightarrow everywhere.
■ For closed conversions, convertibility and coherence are group congruences.
■ Conversion closures are t-compact categories; closed conversions are thin.

Main Results

■ Consistency is explosive; contradiction anywhere \Longrightarrow everywhere.
■ For closed conversions, convertibility and coherence are group congruences.
■ Conversion closures are t-compact categories; closed conversions are thin.
■ For closed conversions, root/numerical equivalence entails convertibility/coherence, resp.
■ For regular conversions, the converse holds.

Main Results

■ Consistency is explosive; contradiction anywhere \Longrightarrow everywhere.
■ For closed conversions, convertibility and coherence are group congruences.
■ Conversion closures are t-compact categories; closed conversions are thin.
■ For closed conversions, root/numerical equivalence entails convertibility/coherence, resp.
■ For regular conversions, the converse holds.
■ Every closed conversion is finitely generated.
■ Every well-defining conversion is consistent, i.e., has a well-defined closure.

Main Results

■ Consistency is explosive; contradiction anywhere \Longrightarrow everywhere.
■ For closed conversions, convertibility and coherence are group congruences.

- Conversion closures are t-compact categories; closed conversions are thin.

■ For closed conversions, root/numerical equivalence entails convertibility/coherence, resp.

■ For regular conversions, the converse holds.

- Every closed conversion is finitely generated.

■ Every well-defining conversion is consistent, i.e., has a well-defined closure.
■ For closed conversions, convertibility encodes the group word problem.
■ For well-defined conversions, convertibility is computable efficiently by rewriting to a normal form.

Agenda

(1) Introduction
(2) Unit Algebra
(3) Conversion Relations
(4) Conclusion

Save the Mars Mission!

$$
\begin{aligned}
& \lfloor\mathrm{N}\rfloor \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor \mathrm{s}\rfloor^{-2} \\
& \lfloor\mathrm{lbf}\rfloor \xrightarrow{\mathrm{l}}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
& \lfloor\mathrm{lb}\rfloor \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
& g_{\mathrm{n}} \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& a=453.59237 \\
& b=9.80665
\end{aligned}
$$

Save the Mars Mission!

$$
\begin{aligned}
\lfloor\mathrm{N}\rfloor & \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor \mathrm{s}\rfloor^{-2} \\
\lfloor\mathrm{lbf}\rfloor & \xrightarrow{1}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
\lfloor\mathrm{lb}\rfloor & \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
g_{\mathrm{n}} & \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
a & =453.59237 \\
b & =9.80665
\end{aligned}
$$

Save the Mars Mission!

$$
\begin{aligned}
& \lfloor\mathrm{N}\rfloor \xrightarrow{\mathrm{l}} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor \mathrm{s}\rfloor^{-2} \\
& \lfloor\mathrm{lbf}\rfloor \xrightarrow{\mathrm{l}}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
& \lfloor\mathrm{lb}\rfloor \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
& g_{\mathrm{n}} \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& \quad a=453.59237 \\
& b=9.80665
\end{aligned}
$$

Save the Mars Mission!

$$
\begin{aligned}
\lfloor\mathrm{N}\rfloor & \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor \mathrm{s}\rfloor^{-2} \\
\lfloor\mathrm{lbf}\rfloor & \xrightarrow{1}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
\lfloor\mathrm{lb}\rfloor & \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
g_{\mathrm{n}} & \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
a & =453.59237 \\
b & =9.80665
\end{aligned}
$$

Save the Mars Mission!

$$
\begin{aligned}
&\lfloor\mathrm{N}\rfloor \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
&\lfloor\mathrm{lbf}\rfloor \xrightarrow{1}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
&\lfloor\mathrm{lb}\rfloor \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
& g_{\mathrm{n}} \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& a=453.59237 \\
& b=9.80665
\end{aligned}
$$

$$
\left.\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \xrightarrow{a b / 1000} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor \mathrm{s}\right\rfloor^{-2}
$$

Save the Mars Mission!

$$
\begin{aligned}
&\lfloor\mathrm{N}\rfloor \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
&\lfloor\mathrm{lbf}\rfloor \xrightarrow{1}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
&\lfloor\mathrm{lb}\rfloor \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
& g_{\mathrm{n}} \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& a=453.59237 \\
& b=9.80665
\end{aligned}
$$

Save the Mars Mission!

$$
\begin{aligned}
&\lfloor\mathrm{N}\rfloor \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
&\lfloor\mathrm{lbf}\rfloor \xrightarrow{1}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
&\lfloor\mathrm{lb}\rfloor \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
& g_{\mathrm{n}} \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& a=453.59237 \\
& b=9.80665
\end{aligned}
$$

Save the Mars Mission!

$$
\begin{aligned}
& \lfloor\mathrm{N}\rfloor \xrightarrow{1} \delta(\mathrm{~kg})\lfloor\mathrm{m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& \lfloor\mathrm{lbf}\rfloor \xrightarrow{\mathrm{l}}\lfloor\mathrm{lb}\rfloor g_{\mathrm{n}} \\
& \lfloor\mathrm{lb}\rfloor \xrightarrow{a}\lfloor\mathrm{~g}\rfloor \\
& g_{\mathrm{n}} \xrightarrow{b}\lfloor\mathrm{~m}\rfloor\lfloor\mathrm{s}\rfloor^{-2} \\
& \quad a=453.59237 \\
& b=9.80665
\end{aligned}
$$

$$
a b / 1000=4.4482216152605
$$

Example Symptoms, Revisited

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".

■ 1 is a dimension in the same way as \varnothing is a set.
$\square 1$ is a derived unit in the same way as 0 is a derived natural number.

Example Symptoms, Revisited

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".

■ 1 is a dimension in the same way as \varnothing is a set.
$\square 1$ is a derived unit in the same way as 0 is a derived natural number.
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions.
■ Units normalize naturally; normalized units are monadic.
■ Reductionistic defining equations remain useful for efficient conversion.

Example Symptoms, Revisited

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".

■ 1 is a dimension in the same way as \varnothing is a set.
■ 1 is a derived unit in the same way as 0 is a derived natural number.
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions.
■ Units normalize naturally; normalized units are monadic.
\square Reductionistic defining equations remain useful for efficient conversion.
(3) ISO 80000-1 defines rad and sr, but treats them as different from each other and 1 .

- Plane angle and solid angle as quantities are distinct, but not algebraic.

■ The semantic properties of the resp. units are algebraic, but not distinct.

Example Symptoms, Revisited

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".

■ 1 is a dimension in the same way as \varnothing is a set.
$\square 1$ is a derived unit in the same way as 0 is a derived natural number.
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions.
■ Units normalize naturally; normalized units are monadic.
■ Reductionistic defining equations remain useful for efficient conversion.
(3) ISO 80000-1 defines rad and sr, but treats them as different from each other and 1 .

- Plane angle and solid angle as quantities are distinct, but not algebraic.

■ The semantic properties of the resp. units are algebraic, but not distinct.
(4) The SI prefix families are geometric sequences, but cannot be written as powers.

■ Understand them as base prefixes; generate a (free abelian) group.
■ Fun fact: Double prefixes are being considered beyond -quetta.

Example Symptoms, Revisited

(1) ISO 80000-1 states that " 1 is not a dimension", but recognizes " 1 as a derived unit".

■ 1 is a dimension in the same way as \varnothing is a set.
$\square 1$ is a derived unit in the same way as 0 is a derived natural number.
(2) ISO 80000-1 defines derived units by equations, but equals cannot be substituted for equals in compound unit expressions.
■ Units normalize naturally; normalized units are monadic.
■ Reductionistic defining equations remain useful for efficient conversion.
(3) ISO 80000-1 defines rad and sr, but treats them as different from each other and 1 .

- Plane angle and solid angle as quantities are distinct, but not algebraic.

■ The semantic properties of the resp. units are algebraic, but not distinct.
(4) The SI prefix families are geometric sequences, but cannot be written as powers.

■ Understand them as base prefixes; generate a (free abelian) group.
■ Fun fact: Double prefixes are being considered beyond -quetta.
(5) Tools tend to specify conversion by way of one canonical unit per dimension.

■ Conversion relations are (transitively) closed, yet allow multiple disconnected components per dimension.

Bonus Track: The 29 Named SI Units

References

[All+04]	E. Allen et al. "Object-Oriented Units of Measurement". In: SIGPLAN Not. 39.10 (2004), pp. 384-403. DOI: 10.1145/1035292.1029008.
[Ken96]	A. Kennedy. "Programming Languages and Dimensions". PhD Diss. University of Cambridge, 1996. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf.
[MBBS20]	S. McKeever, O. Bennich-Björkman, and O.-A. Salah. "Unit of measurement libraries, their popularity and suitability". In: Software: Practice and Experience 51 (4 2020), pp. 711-734. DOI: 10.1002/spe. 2926.
[ISO09]	Quantities and units - Part 1: General. Standard ISO/IEC 80000-1:2009. International Organization for Standardization, 2009. URL: https://www.iso.org/obp/ui/\#iso:std:iso:80000:-1:ed-1:v1:en.
[CGPM16.5]	"Resolution 5". In: Proc. 16th CGPM. Bureau International des Poids et Mésures, 1979. ISBN: 92-822-2059-1. URL: https://www.bipm.org/en/committees/cg/cgpm/16-1979/resolution-5.
[Ste+99]	A. G. Stephenson et al. Mars Climate Orbiter Mishap Investigation Board Phase I Report. NASA. 1999. URL: https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf.
[TL22]	B. Trancón y Widemann and M. Lepper. Towards a Theory of Conversion Relations for Prefixed Units of Measure. Extended report. 2022. arXiv: 2212.11580.

