Linear bounds between Cliquewidth and Component twin-width and applications

Ambroise Baril, Miguel Couceiro, Victor Lagerkvist

Université de Lorraine, CNRS, LORIA & Linköpings Universitet

April 2023

First bound

Second bound

Complexity consequences

Contents

First boun

Second bound

Complexity consequences

First bound

Second bound

Complexity consequences

k-COLORING

Figure: Instance of 3-COLORING

Figure: Solution of the instance

 $c: V_G \mapsto [k]$ such that $\forall (u, v) \in E_G$, $c(u) \neq c(v)$

First bound

Second bound

Complexity consequences

H-COLORING

Example of a C5-COLORING

 $f: V_G \to V_H$ $\forall (u, v) \in E_G, (f(u), f(v)) \in E_H$ f is an Homomorphism

k-COLORING = K_k -COLORING

Hard problem

Naive algorithm in time $|V_H|^{|V_G|}$

No algo in time $F(H) \times |V_G|^{F(H)}$ unless $P=NP(H = K_3)$

No algo in time $F(G) \times |V_H|^{O(1)}$ unless FPT=W[1] $(G = K_k)$

How to solve in practice ?

Hard problem

Naive algorithm in time $|V_H|^{|V_G|}$

No algo in time $F(H) \times |V_G|^{F(H)}$ unless P=NP $(H = K_3)$

No algo in time $F(G) \times |V_H|^{O(1)}$ unless FPT=W[1] $(G = K_k)$

How to solve in practice ?

Use structural properties of the graphs involved

Clique-width

First bound

Second bound

Complexity consequences

• *i*: vertex labelled by *i*

 $G_1 \oplus G_2$: disjointed union

 $\rho_{j \to i}(G)$: relabel the j with i

 $\eta_{i,j}(G)$: construct an edge between every *i* and *j*

cw(G): number of labels

linearcw(G): number of labels where every \oplus contains a \bullet_i member

Figure: 3-expression of a graph

First bound

Second bound

Complexity consequences

Application to counting homomorphisms

Parameterized complexity:

k-COLORING in time $(2^{|V_H|}-2)^{cw(G)}$ [Lam20]¹

Fine-grained complexity:

#*H*-COLORING in time: $(2cw(H)+1)^{|V_G|}$ and $(linearcw(H)+2)^{|V_G|}$ [Wah11]²

¹Lampis ²Wahlström

First bound

Second bound

Complexity consequences

Exemple of a contraction sequence

Figure: A contraction sequence of a graph

First bound

Second bound

Complexity consequences

(Component) twin-width

No FPT algo for 3-COLOR param by tww(G):

3-COLOR is NP-hard on planar graphs

tww is bounded on planar graphs

Figure: Contraction sequence of a graph

tww(G): Maximal red-degree [BKTW20]^a
ctww(G): Max red-component size [BKRT22]^b

^aBonnet, Kim, Thomassé, Watrigant ^bBonnet, Kim, Reinald, Thomassé

First bound

Second bound

Complexity consequences

Applications to counting homomorphisms

Naive use of component twin-width for #H-COLORING:

Parameterized complexity:

 $(2^{|V_H|}-1)^{\mathsf{ctww}(G)}$

Fine-grained complexity:

 $(\operatorname{ctww}(H) + 2)^{|V_G|}$

First bound

Second bound

Complexity consequences

Comparing complexities

Which approach is the best ?

Parameterized complexity:

$$(2^{|V_H|}-1)^{\text{ctww}(G)}$$
 VS $(2^{|V_H|}-2)^{\text{cw}(G)}$

Fine-grained complexity:

 $(\text{ctww}(H) + 2)^{|V_G|} \text{ VS } (2\text{cw}(H) + 1)^{|V_G|} \text{ and } (\text{linearcw}(H) + 2)^{|V_G|}$

We need to compare the two parameters cw and ctww.

First bound

Second bound

Complexity consequences

Functional Equivalence

Using boolean-width (func equiv to cliquewidth) [BKRT22]³

$$\mathsf{ctww}(G) \le 2^{\mathsf{boolw}(G)+1} \le 2^{\mathsf{cw}(G)+1}$$

AND

$$cw(G) \le 2^{boolw(G)}$$
 and $boolw(G) \le 2^{ctww(G)}$
so
 $cw(G) \le 2^{2^{ctww(G)}}$

³Bonnet, Kim, Reinald, Thomassé

First bound

Second bound

Complexity consequences

Contents

1 #H-COLORING

Complexity consequences

First bound

Second bound

Complexity consequences

Functional equivalence

We already know:

$$\operatorname{cw}(G) \leq 2^{2^{\operatorname{ctww}(G)}}$$

First bound

Second bound

Complexity consequences

First contribution: Improved bound

I will prove

 $\operatorname{cw}(G) \leq \operatorname{ctww}(G) + 1$

Take a contraction sequence of G of ctww k

Build a (k+1)-expression of G

First bound

Second bound

Complexity consequences

Exemple of a contraction sequence

 $\label{eq:Figure: A contraction sequence of a graph$

For $C = \{S_1, ..., S_p\}$ red-component Build φ_C a (k+1)-expression of $G[S_1 \uplus \cdots \uplus S_p]$ with $\forall i, label(S_i) = i$

Same red-component = Same formula Same set = Same label

Second bound

Complexity consequences

Contraction sequence of ctww=3

We will use 4 labels: •, •, •, •: proves $cw \le 4$

Red-component are singletons {a}, {b},...

First bound

Second bound

Complexity consequences

Contracting e and f

$$\varphi_{a} = \bullet$$

$$\varphi_{b} = \bullet$$

$$\varphi_{c} = \bullet$$

$$\varphi_{d} = \bullet$$

$$\varphi_{e} = \bullet$$

$$\varphi_{f} = \bullet$$

$$\varphi_{g} = \bullet$$

 $\rho_{\bullet, \to \bullet}$ $\eta_{\bullet, \bullet} \eta_{\bullet, \bullet} \eta_{\bullet, \bullet} \eta_{\bullet, \bullet}$ $(\varphi_a \oplus \varphi_d \oplus \varphi_d \oplus \varphi_e \oplus \varphi_f)$

 $\varphi_{adef} =$

17

First bound

Second bound

Complexity consequences

Contracting a and d

$$\varphi_{adef}$$

 $\varphi_g = \bullet$

$$\varphi_{adefg} = \rho_{\bullet \mapsto \bullet}$$
$$\eta_{\bullet, \bullet} \eta_{\bullet, \bullet}$$
$$(\varphi_{adef} \oplus \varphi_g)$$

18

First bound

Second bound

Complexity consequences

Contracting *b* and *ef*

 $\begin{aligned} \varphi_{adbefg} &= \\ \rho_{\bullet, \bullet, \bullet} \\ \eta_{\bullet, \bullet} \eta_{\bullet, \bullet} \\ (\varphi_{adefg} \oplus \varphi_b) \end{aligned}$

First bound

Second bound

Complexity consequences

Contracting ad and g

 $\varphi_{adgbef} =$ $\rho_{\bullet \mapsto \bullet}$ φ_{adbefg}

First bound

Second bound

Complexity consequences

Contracting *c* and *bef*

 $\varphi_{adgbcef} = \rho_{\bullet, \to \bullet}$ $\eta_{\bullet, \bullet}$ $(\varphi_{adgbef} \oplus \varphi_c)$

Consequence

Contraction of comp.width $k \implies (k+1)$ -expression

 $cw(G) \le ctww(G) + 1$

Tight for cographs (cw = 2, ctww = 1)

First bound

Second bound •00000000000000

Complexity consequences

Contents

1 #H-COLORIN

First bound

3 Second bound

Complexity consequences

23

First bound

Second bound

Complexity consequences

Functional equivalence

We already know:

 $\mathsf{ctww}(G) \le 2^{\mathsf{ctww}(G)+1}$

First bound

Second bound

Complexity consequences

Second contribution: Improved bound on component twin-width

I will prove

 $\operatorname{ctww}(G) \leq 2\operatorname{cw}(G) - 1$ and $\operatorname{ctww}(G) \leq \operatorname{linearcw}(G)$

Take a (linear) k-expression

Build a contraction sequence of G, where every red-component has size $\leq 2k - 1$ (resp. $\leq k$).

First bound

Second bound

Complexity consequences

k-expression

Figure: k-expression tree structure

Severe abuse of notation: ⊕ must be binary

First bound

Second bound

Complexity consequences

Intuition: contract same colors in \oplus

Build larger and larger "parks" following the *k*-expressions. Contract similar colors:

- Parks size $\leq 2k$
- No red-edges crossing parks

Initial parks are single vertices

First bound

Second bound

Complexity consequences

Free contraction of twins

Here, *d*, *e* and *f* (as well as *h* and *i*) are introduced together with the same labels: they are twins

First bound

Second bound

Complexity consequences

Contracting similar colors in a park

- Merge the parks of *a* and *b*, of *c* and *def* and of *g* and *hi*.
- Collapse the *k*-expression
- No 2 different colors in the same park: no contraction.

First bound

Second bound

Complexity consequences

Joining different colors in a park

- Merge the parks of {*a*, *b*} and {*c*, *def*} and of {*g*, *hi*} and {*j*}.
- *b* and *c* are both blue in the same park: contract them.

b and c have been contracted.

 \boldsymbol{b} and \boldsymbol{c} will have eternally the same label

b and c have exactly the same neighbors in $\{g, h, i, j\}$: no red-edge crossing parks a will become blue: contract a and bc j will become green: contract j and g

a and bc have been contracted.

g and j will have eternally the same label

g and j have exactly the same neighbors in $\{a, b, c, d, e, f\}$

Next step: merge parks. One park left: Ends. Finish the contraction sequence randomly

First bound

Second bound

Complexity consequences

Largest possible red-component

k labels on both side. Red-comp of size *k* on both side.

Peak: Red-comp of size 2k - 1Then, contract by color until k vertices left in the park Then, procede to the next \oplus

First bound

Second bound

Complexity consequences

Case of a linear k-expression

Linear *k*-expression: $G_1 \oplus G_2$ is used $\implies G_2$ has one vertex

k labels on one side. 1 vertex (so 1 label) on the otherside

Peak: Red-comp of size k

Consequence

(Linear) k-expression \implies contraction sequence with every red-comp having size $\leq 2k - 1$ (resp. k)

 $\mathsf{ctww}(\mathsf{G}) \le 2\mathsf{cw}(\mathsf{G}) - 1$ and $\mathsf{ctww}(\mathsf{G}) \le \mathsf{linearcw}(\mathsf{G})$

$$\mathsf{tww}(G) \le 2\mathsf{cw}(G) - 2$$

Tight ?

First bound

Second bound

Complexity consequences

Contents

1 #H-COLORIN

First boun

3 Second

Complexity consequences

36

First bound

Second bound

Complexity consequences

Parameterized complexity

Use the first bound: $cw \le ctww + 1$

$$(2^{|V_H|}-2)^{cw(G)}$$
 VS $(2^{|V_H|}-1)^{ctww(G)}$

First bound

Second bound

Complexity consequences

Parameterized complexity

Use the first bound: $cw \le ctww + 1$

$$(2^{|V_H|}-2)^{cw(G)}$$
 VS $(2^{|V_H|}-1)^{ctww(G)}$

Clique-width approach wins... for the moment (very naive) !

First bound

Second bound

Complexity consequences

Fine grained complexity

Use the second bound: $ctww \le 2cw - 1$ and $ctww \le linearcw$

 $(\operatorname{ctww}(H) + 2)^{|V_G|} \text{ VS } (2\operatorname{cw}(H) + 1)^{|V_G|} \text{ and } (\operatorname{linearcw}(H) + 2)^{|V_G|}$

First bound

Second bound

Complexity consequences

Fine grained complexity

Use the second bound: $ctww \le 2cw - 1$ and $ctww \le linearcw$

 $(\operatorname{ctww}(H) + 2)^{|V_G|} \text{ VS } (2\operatorname{cw}(H) + 1)^{|V_G|} \text{ and } (\operatorname{linearcw}(H) + 2)^{|V_G|}$

Component twin-width approach wins without effort

References

		۰.
	_	
1.1	_	

Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé, Twin-width vi: the lens of contraction sequences, SODA-2022, SIAM, 2022, pp. 1036–1056.

Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant, *Twin-width I:* tractable FO model checking, FOCS-2020, IEEE, 2020.

Michael Lampis, *Finer tight bounds for coloring on clique-width*, SIAM Journal on Discrete Mathematics 34 (2020), no. 3, 1538–1558.

Magnus Wahlström, New plain-exponential time classes for graph homomorphism, Theory of Computing Systems 49 (2011), no. 2, 273–282.

First bound

Second bound

Complexity consequences

Thank you for your attention !

Questions ?