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k-COLORING

Figure: Instance of Figure: Solution of the
3-COLORING instance

c: Vg — [k] such that V(u,v) € Eg, c(u) #c(v)
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Example of a C5-COLORING

f:Veg—Vy
V(u,v)eEg,(f(u),f(v))eEy
f is an Homomorphism

k-COLORING = K -COLORING
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Hard problem

Naive algorithm in time |Vj|'Ve!

No algo in time F(H) x |VgIF(H) unless P=NP (H = K3)
No algo in time F(G) x|V unless FPT=W[1] (G = K)

How to solve in practice ?
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Hard problem

Naive algorithm in time [Vyl|!Vel
No algo in time F(H) x |VgIF(H) unless P=NP (H = K3)
No algo in time F(G) x|V unless FPT=W[1] (G = K)
How to solve in practice ?

Use structural properties of the graphs involved
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Clique-width
s e (et <t

Figure: 3-expression of a graph

o;: vertex labelled by i
Gy @ Gy: disjointed union

pj—i(G): relabel the j
with i

1;,;j(G): construct an edge
between every i and j

cw(G): number of labels

linearcw(G): number of
labels where every @
contains a ¢; member
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Application to counting homomorphisms

Parameterized complexity:
k-COLORING in time (2!V#l —2)°w(6) [Lam20]*
Fine-grained complexity:

#H-COLORING in time:
(2cw(H) +1)!Ve! and (linearcw(H) +2)!Ve! [Wah11]?

1Lampis
2\Wahlstrém
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Figure: A contraction sequence of a graph
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(Component) twin-width

No FPT algo for 3-COLOR
param by tww(G):

3-COLOR is NP-hard on
planar graphs

Figure: Contraction sequence of a graph

tww is bounded on planar

tww(G): Maximal red-degree [BKTW20)? graphs

ctww(G): Max red-component size [BKRT22]®

2Bonnet, Kim, Thomassé, Watrigant
bBonnet, Kim, Reinald, Thomassé
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Applications to counting homomorphisms

Naive use of component twin-width for #H-COLORING:
Parameterized complexity:
(2|VH| _ 1)ctWW(G)
Fine-grained complexity:

(ctww(H) +2)! Vel
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Comparing complexities

Which approach is the best 7
Parameterized complexity:
(2IVHl = 1)tww(C) g (2IVhl _ 2)ew(G)
Fine-grained complexity:
(ctww(H) +2)!Vel VS (2cw(H) +1)!Vel and (linearcw(H) +2)!Ve!

We need to compare the two parameters cw and ctww.
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Functional Equivalence

Using boolean-width (func equiv to cliquewidth) [BKRT22]3
ctww(G) < 2b00W(G)+1 < pew(G)+1
AND
cw(G) < 20°°W(C) and boolw(G) < 2¢tw(C)

S0
cw(G) <2

2 ctww

3Bonnet, Kim, Reinald, Thomassé
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Functional equivalence

We already know:

2 ctww(G

cw(G) <2
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First contribution: Improved bound

| will prove
cw(G) =ctww(G) +1
Take a contraction sequence of G of ctww k

Build a (k +1)-expression of G
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Exemple of a contraction sequence

For C ={S51,...,5p} red-component
Build ¢ ¢ a (k +1)-expression of
G[S1w---wSp] with Vi, label(S;) =i

Same red-component = Same
formula
Same set = Same label

Figure: A contraction sequence of a
graph
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Base case

Contraction sequence of ctww=3

We will use 4 labels: «, =, -, <: proves cw=<4

®

Red-component are singletons {a}, {b},...

Pa=-»
Pp=-
Pc=-
Q4=
Pe ="
Qr=-
Pg=-
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Contracting ¢ and bef

(&) ber ]--{ade]

Padg
Pc

Padgbcef =
0 e

e,

(Pacg - ®
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Consequence

Contraction of comp.width k = (k + 1)-expression

‘ caw(G) = ctww(G) +1 ‘

Tight for cographs (cw =2, ctww =1)
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Functional equivalence

We already know:

CtWW( G) < 2CtWW(G)+1
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Second contribution: Improved bound on component

twin-width

| will prove
ctww(G) <2cw(G) -1 and ctww(G) <linearcw(G)
Take a (linear) k-expression

Build a contraction sequence of G, where every red-component has
size <2k —1 (resp. < k).



Second bound

000@000000000

k-expression

e m

Figure: k-expression tree structure

Severe abuse of notation: ® must
be binary
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Intuition: contract same colors in @

Build larger and larger "parks"
following the k-expressions.
Contract similar colors:

o Parks size <2k

@ No red-edges crossing parks

@7
@ [

Initial parks are single vertices

[\/
/@
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Free contraction of twins

Here, d, e and f (as well as h and /)
are introduced together with the
same labels: they are twins

becomes I:I

e -
gf@i
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Contracting similar colors in a park

@ Merge the parks of a and b,
of ¢ and def and of g and
hi.

@ Collapse the k-expression

@ No 2 different colors in the
same park: no contraction.

def

™~
@
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Joining different colors in a park

@ Merge the parks of {a, b} and
{c,def} and of {g, hi} and {j}.

@ b and c are both blue in the
same park: contract them.

@«
[

(e)—{(ni)
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Main argument: no red-edge crossing parks

{260 | hi b and ¢ have been contracted.
L I
= [

def @.

@

b and c will have eternally the

same label

a will become blue: contract a
b and ¢ have exactly the same and bc
neighbors in {g, h,i,j}: no J will become green: contract j
red-edge crossing parks and g
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Renaming in a park: no red-edge crossing parks

a and bc have been contracted.

@ ()| @@

Next step: merge parks.
One park left: Ends.
Finish the contraction sequence
randomly

g and j will have eternally the
same label

g and j have exactly the same
neighbors in {a,b,c,d, e, f}
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Largest possible red-component

k labels on both side.
Red-comp of size k on both side.

Peak: Red-comp of size 2k -1
Then, contract by color until k
vertices left in the park

Then, procede to the next &
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Case of a linear k-expression

Linear k-expression: G ® G, is
used = G» has one vertex

k labels on one side.
1 vertex (so 1 label) on the
otherside

Peak: Red-comp of size k
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Consequence

(Linear) k-expression = contraction sequence with every
red-comp having size <2k —1 (resp. k)

‘ctww(G) <2cw(G) -1 and ctww(G) < Iinearcw(G)‘

tww(G) < 2cw(G) -2

Tight ?
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Parameterized complexity

Use the first bound: cw < ctww +1

(2|VH| _ 2)CW(G) VS (2|VH| _ 1)ctWW(G)
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Parameterized complexity

Use the first bound: cw < ctww +1
(2|VH| _ 2)CW(G) VS (2|VH| _ 1)ctWW(G)

Clique-width approach wins... for the moment (very naive) !
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Fine grained complexity

Use the second bound: ctww <2cw—1 and ctww < linearcw

(ctww(H) +2)!Vel VS (2cw(H) +1)!Vel and (linearcw(H) +2)!Ve!
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Fine grained complexity

Use the second bound: ctww <2cw—1 and ctww < linearcw
(ctww(H) +2)!Vel VS (2cw(H) +1)!Vel and (linearcw(H) +2)!Ve!

Component twin-width approach wins without effort
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Thank you for your attention !

Questions ?
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