Linear bounds between Cliquewidth and Component twin-width and applications

Ambroise Baril, Miguel Couceiro, Victor Lagerkvist

Université de Lorraine, CNRS, LORIA \& Linköpings Universitet

April 2023
\#H-COLORING
Contents

1 \#H-COLORING

First bound

Second bound

Complexity consequences

k-COLORING

Figure: Instance of 3-COLORING

Figure: Solution of the instance

$$
c: V_{G} \mapsto[k] \text { such that } \forall(u, v) \in E_{G}, c(u) \neq c(v)
$$

H-COLORING

Example of a C_{5}-COLORING
$f: V_{G} \rightarrow V_{H}$
$\forall(u, v) \in E_{G},(f(u), f(v)) \in E_{H}$
f is an Homomorphism
k-COLORING $=k_{k}$-COLORING

Hard problem

Naive algorithm in time $\left|V_{H}\right|^{\left|V_{G}\right|}$
No algo in time $F(H) \times\left|V_{G}\right|^{F(H)}$ unless $\mathrm{P}=\mathrm{NP}\left(H=K_{3}\right)$
No algo in time $F(G) \times\left|V_{H}\right|^{O(1)}$ unless $\mathrm{FPT}=\mathrm{W}[1]\left(G=K_{k}\right)$
How to solve in practice ?

Naive algorithm in time $\left|V_{H}\right|^{\left|V_{G}\right|}$
No algo in time $F(H) \times\left|V_{G}\right|^{F(H)}$ unless $\mathrm{P}=\mathrm{NP}\left(H=K_{3}\right)$
No algo in time $F(G) \times\left|V_{H}\right|^{O(1)}$ unless $\mathrm{FPT}=\mathrm{W}[1]\left(G=K_{k}\right)$
How to solve in practice?
Use structural properties of the graphs involved

Clique-width

\bullet_{i} : vertex labelled by i

Figure: 3-expression of a graph
$G_{1} \oplus G_{2}$: disjointed union
$\rho_{j \rightarrow i}(G)$: relabel the j with i
$\eta_{i, j}(G)$: construct an edge between every i and j
$\mathrm{cw}(G)$: number of labels
linearcw (G) : number of labels where every \oplus contains a $\bullet i$ member

Application to counting homomorphisms

Parameterized complexity:

$$
k \text {-COLORING in time }\left(2^{\left|V_{H}\right|}-2\right)^{\mathrm{cw}(G)}[\operatorname{Lam} 20]^{1}
$$

Fine-grained complexity:

$$
\begin{gathered}
\text { \#H-COLORING in time: } \\
(2 \mathrm{cw}(H)+1)^{\left|V_{G}\right|} \text { and }(\text { linearcw }(H)+2)^{\left|V_{G}\right|}[\text { Wah11 }]^{2}
\end{gathered}
$$

[^0]
Exemple of a contraction sequence

Figure: A contraction sequence of a graph

(Component) twin-width

No FPT algo for 3-COLOR param by tww (G) :

3-COLOR is NP-hard on planar graphs
tww is bounded on planar graphs $\operatorname{tww}(G)$: Maximal red-degree [BKTW20] ${ }^{a}$ $\operatorname{ctww}^{(G)}$: Max red-component size [BKRT22] ${ }^{b}$

Figure: Contraction sequence of a graph

[^1]
Applications to counting homomorphisms

Naive use of component twin-width for $\# H$-COLORING:

Parameterized complexity:

$$
\left(2^{\left|V_{H}\right|}-1\right)^{\operatorname{ctww}(G)}
$$

Fine-grained complexity:

$$
(\operatorname{ctww}(\mathrm{H})+2)^{\left|V_{G}\right|}
$$

Comparing complexities

Which approach is the best?

Parameterized complexity:

$$
\left(2^{\left|V_{H}\right|}-1\right)^{\operatorname{ctww}(G)} V S\left(2^{\left|V_{H}\right|}-2\right)^{\mathrm{cw}(G)}
$$

Fine-grained complexity:
$(\operatorname{ctww}(\mathrm{H})+2)^{\left|V_{G}\right|} \mathrm{VS}(2 \mathrm{cw}(\mathrm{H})+1)^{\left|V_{G}\right|}$ and $(\operatorname{linearcw}(\mathrm{H})+2)^{\left|V_{G}\right|}$
We need to compare the two parameters cw and ctww.

Functional Equivalence

Using boolean-width (func equiv to cliquewidth) [BKRT22] ${ }^{3}$

$$
\operatorname{ctww}(G) \leq 2^{\operatorname{boolw}(G)+1} \leq 2^{\mathrm{cw}(G)+1}
$$

AND

$$
\begin{gathered}
\operatorname{cw}(G) \leq 2^{\operatorname{boolw}(G)} \text { and boolw }(G) \leq 2^{\operatorname{ctww}(G)} \\
\text { so } \\
\operatorname{cw}(G) \leq 2^{2^{\operatorname{ctww}(G)}}
\end{gathered}
$$

[^2]
Contents

\#H-COLORING

First bound

Second bound

Complexity consequences

Functional equivalence

We already know:

$$
\mathrm{cw}(G) \leq 2^{2^{c t w w}(G)}
$$

First contribution: Improved bound

$$
\begin{gathered}
\text { I will prove } \\
\mathrm{cw}(G) \leq \operatorname{ctww}(G)+1
\end{gathered}
$$

Take a contraction sequence of G of ctww k

Build a $(k+1)$-expression of G

Exemple of a contraction sequence

For $C=\left\{S_{1}, \ldots, S_{p}\right\}$ red-component Build φ_{C} a $(k+1)$-expression of $G\left[S_{1} \uplus \cdots \uplus S_{p}\right]$ with $\forall i$, label $\left(S_{i}\right)=i$

Same red-component $=$ Same formula
Same set $=$ Same label
Figure: A contraction sequence of a graph

Base case

Contraction sequence of $c t w w=3$

We will use 4 labels: •, ॰, ॰, ॰: proves $\mathrm{cw} \leq 4$

Red-component are singletons $\{a\},\{b\}, \ldots$

$$
\begin{aligned}
& \varphi_{a}= \\
& \varphi_{b}= \\
& \varphi_{c}= \\
& \varphi_{d}= \\
& \varphi_{e}= \\
& \varphi_{f}= \\
& \varphi_{g}=
\end{aligned}
$$

Contracting e and f

(a) (d)

$\varphi_{a d e f}=$
$\rho_{\bullet \mapsto}$
$\eta_{\bullet,} \eta_{\bullet, \stackrel{ }{ }} \eta_{\bullet, \circ}$
$\left(\varphi_{a} \oplus \varphi_{d} \oplus\right.$
$\left.\varphi_{e} \oplus \varphi_{f}\right)$

Contracting a and d

$\varphi_{\text {adef }}$
$\varphi=。$

$$
\begin{aligned}
& \varphi_{\text {adefg }}= \\
& \rho_{\circ \mapsto} \\
& \eta_{\bullet,} \eta_{\circ,} \\
& \left(\varphi_{\text {adef }} \oplus \varphi_{g}\right)
\end{aligned}
$$

Contracting b and ef

$\varphi_{\text {ad ef } g}$
φ_{b}

$$
\begin{aligned}
& \varphi_{\text {adbefg }}= \\
& \rho_{\bullet \mapsto} \\
& \eta_{\bullet, \cdot} \eta_{\bullet, \circ} \\
& \left(\varphi_{\text {adefg }} \oplus \varphi_{b}\right)
\end{aligned}
$$

Contracting ad and g

φ adbef g

$$
\begin{aligned}
& \boldsymbol{\varphi}_{\text {adgbef }}= \\
& \rho_{a \mapsto 0} \\
& \boldsymbol{\varphi}_{\text {adbefg }}
\end{aligned}
$$

Contracting c and bef

$\boldsymbol{\varphi}_{\text {adg bef }}$
$\boldsymbol{\varphi}_{C}$

$$
\text { bcef }-\mathrm{-}-\mathrm{-} \text { adg }
$$

$\varphi_{\text {adg bcef }}=$
$\rho_{\text {o• }}$
$\eta_{\bullet,}$
$\left(\varphi_{\text {adg bef }} \oplus\right.$
$\left.\varphi_{C}\right)$

Consequence

Contraction of comp. width $k \Longrightarrow(k+1)$-expression

$$
\mathrm{cw}(\mathrm{G}) \leq \operatorname{ctww}(\mathrm{G})+1
$$

Tight for cographs $(c w=2, c t w w=1)$

Contents

\#H-COLORING

First bound

Second bound

Complexity consequences

Functional equivalence

We already know:

$$
\operatorname{ctww}(G) \leq 2^{\operatorname{ctww}(G)+1}
$$

Second contribution: Improved bound on component

 twin-width> I will prove
> $\operatorname{ctww}(G) \leq 2 \operatorname{cw}(G)-1$ and $\operatorname{ctww}(G) \leq \operatorname{linearcw}(G)$

Take a (linear) k-expression

Build a contraction sequence of G, where every red-component has size $\leq 2 k-1$ (resp. $\leq k)$.

k-expression

Figure: k-expression tree structure

Severe abuse of notation: \oplus must be binary

Intuition: contract same colors in \oplus

Build larger and larger "parks" following the k-expressions.

Contract similar colors:

- Parks size $\leq 2 k$
- No red-edges crossing parks

Initial parks are single vertices

Free contraction of twins

Here, d, e and f (as well as h and i) are introduced together with the same labels: they are twins

becomes

Contracting similar colors in a park

- Merge the parks of a and b, of c and def and of g and hi.
- Collapse the k-expression
- No 2 different colors in the same park: no contraction.

Joining different colors in a park

- Merge the parks of $\{a, b\}$ and $\{c, d e f\}$ and of $\{g, h i\}$ and $\{j\}$.
- b and c are both blue in the same park: contract them.

Main argument: no red-edge crossing parks

b and c will have eternally the same label
b and c have exactly the same neighbors in $\{g, h, i, j\}$: no red-edge crossing parks
b and c have been contracted.

a will become blue: contract a and $b c$
j will become green: contract j and g

Renaming in a park: no red-edge crossing parks

g and j will have eternally the same label
g and j have exactly the same neighbors in $\{a, b, c, d, e, f\}$
a and $b c$ have been contracted.

Next step: merge parks.
One park left: Ends.
Finish the contraction sequence randomly

Largest possible red-component

k labels on both side.
Red-comp of size k on both side.
Peak: Red-comp of size $2 k-1$ Then, contract by color until k vertices left in the park Then, procede to the next \oplus

Case of a linear k-expression

Linear k-expression: $G_{1} \oplus G_{2}$ is used $\Longrightarrow G_{2}$ has one vertex

k labels on one side.
1 vertex (so 1 label) on the otherside

Peak: Red-comp of size k

Consequence

(Linear) k-expression \Longrightarrow contraction sequence with every red-comp having size $\leq 2 k-1$ (resp. k)

$$
\operatorname{ctww}(G) \leq 2 \operatorname{cw}(G)-1 \text { and } \operatorname{ctww}(G) \leq \operatorname{linearcw}(G)
$$

$$
\operatorname{tww}(G) \leq 2 \operatorname{cw}(G)-2
$$

Tight ?

Contents

\#H-COLORING

First bound

Second bound

Complexity consequences

Parameterized complexity

Use the first bound: $c w \leq c t w w+1$
$\left(2^{\left|V_{H}\right|}-2\right)^{\mathrm{cw}(G)} \mathrm{VS}\left(2^{\left|V_{H}\right|}-1\right)^{\operatorname{ctww}(G)}$

Parameterized complexity

Use the first bound: $c w \leq c t w w+1$

$$
\left(2^{\left|V_{H}\right|}-2\right)^{\mathrm{cw}(G)} \mathrm{VS}\left(2^{\left|V_{H}\right|}-1\right)^{\operatorname{ctww}(G)}
$$

Clique-width approach wins... for the moment (very naive)!

Fine grained complexity

Use the second bound: ctww $\leq 2 \mathrm{cw}-1$ and ctww \leq linearcw

$$
(\operatorname{ctww}(H)+2)^{\left|V_{G}\right|} \operatorname{VS}(2 \mathrm{cw}(H)+1)^{\left|V_{G}\right|} \text { and }(\operatorname{linearcw}(H)+2)^{\left|V_{G}\right|}
$$

Fine grained complexity

Use the second bound: ctww $\leq 2 \mathrm{cw}-1$ and ctww \leq linearcw

$$
(\operatorname{ctww}(H)+2)^{\left|V_{G}\right|} \operatorname{VS}(2 \mathrm{cw}(H)+1)^{\left|V_{G}\right|} \text { and }(\operatorname{linearcw}(H)+2)^{\left|V_{G}\right|}
$$

Component twin-width approach wins without effort

References

Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé, Twin-width vi: the lens of contraction sequences, SODA-2022, SIAM, 2022, pp. 1036-1056.

Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant, Twin-width I: tractable FO model checking, FOCS-2020, IEEE, 2020.

Michael Lampis, Finer tight bounds for coloring on clique-width, SIAM Journal on Discrete Mathematics 34 (2020), no. 3, 1538-1558.

Magnus Wahlström, New plain-exponential time classes for graph homomorphism, Theory of Computing Systems 49 (2011), no. 2, 273-282.

Thank you for your attention!

Questions?

[^0]: ${ }^{1}$ Lampis
 ${ }^{2}$ Wahlström

[^1]: ${ }^{a}$ Bonnet, Kim, Thomassé, Watrigant
 ${ }^{b}$ Bonnet, Kim, Reinald, Thomassé

[^2]: ${ }^{3}$ Bonnet, Kim, Reinald, Thomassé

