On the Complexity of Kleene Algebra With Domain

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

Prague, The Czech Republic

RAMiCS 2023 Augsburg, 3-6 April 2023

Introduction

- Kleene algebra with tests (Kozen, 1997): a two-sorted algebraic framework for reasoning about imperative programs. (Eq(KAT) is PSPACE-complete; $Eq(KAT) = Eq(KAT^*) = Eq(RKAT)$.)
- Kleene algebra with domain (Desharnais et al., 2006; Desharnais and Struth, 2011): a one-sorted alternative.
- KAD extends KA with a unary antidomain operator, generalizing the properties of

$${\sim}R:=\{(s,s)\mid \neg\exists t.(s,t)\in R\}$$

(divergence; dynamic negation of Groenendijk and Stokhof (1991))

KAD is more expressive that KAT (Struth, 2016), but what about its complexity? What about KAD vs. KAD* vs. RKAD?

Contribution

- We show that the eq. theory of KAD is EXPTIME-complete
- Proof strategy: mutual reductions between KAD and the eq. theory of Relational Test Algebras (Hollenberg, 1997)
- Our proof also shows that $Eq(KAD) = Eq(KAD^*) = Eq(RKAD)$.

Outline:

$$\mathsf{KAD} \dashrightarrow \mathsf{RTA} \dashrightarrow (\mathsf{KAD} \stackrel{\longleftarrow}{\hookrightarrow} \mathsf{RTA}) \dashrightarrow \mathsf{Discussion}$$

Kleene algebra with domain

Kleene algebra with domain

Definition 1

A Kleene algebra with domain is

$$\mathcal{A} = (A, \cdot, +, *, \mathsf{a}, 1, 0)$$

such that $(A, \cdot, +, *, 1, 0)$ is a Kleene algebra and (domain d = a²)

$$\mathsf{a}(x) \cdot x = 0 \tag{1}$$

$$\mathsf{a}(x \cdot y) \le \mathsf{a}(x \cdot \mathsf{d}(y)) \tag{2}$$

$$\mathsf{d}(x) + \mathsf{a}(x) = 1 \tag{3}$$

A Kleene algebra with domain is *-continuous iff its underlying Kleene algebra is *-continuous (i.e. $xy^*z = \sum_{n>0} xy^n z$).

Kleene algebra with domain - Examples

Example

Relational KAD: A relational Kleene algebra (A a set of binary relations, \cdot composition, + union, * reflexive transitive closure, 1 identity relation, $0 = \emptyset$) with \sim :

$$\sim R = \{(s,s) \mid \neg \exists t. (s,t) \in R\}$$

Note that $\sim \sim R = \{(s, s) \mid \exists t.(s, t) \in R\}.$

Example

Regular-language KAD: A Kleene algebra of regular languages over a finite alphabet Σ where

$$\mathsf{a}(L) = egin{cases} \{\epsilon\} & ext{if } L = \emptyset \ \emptyset & ext{otherwise}. \end{cases}$$

Kleene algebra with domain - Some facts

Proposition 1

The following hold in each Kleene algebra with domain, for all x, y, z:

1 $d(x) \le 1$ (domain elements are subidentities)2d(x)a(x) = 0(law of noncontradiction)3d(x)x = x(left invariant)4d(xd(y)) = d(xy)(locality)5d(x + y) = d(x) + d(y)(additivity)6d(x)d(y) = d(d(x)d(y))(d-multiplication)

Kleene algebra with domain - Some facts

Proposition 1

Kleene algebra with domain and KAT

For all $X \subseteq A$: $d(X) = \{ d(x) \mid x \in X \}$.

Lemma 1

If $\mathcal{A} \in KAD$, then $d(\mathcal{A}) \in Sub(\mathcal{A}) \cap BA$, where

$$\mathsf{d}(\mathcal{A}) = \left(\mathsf{d}(A), \cdot, +, \mathsf{a}, 1, 0\right).$$

It follows that $(A, d(\mathcal{A}), \cdot, +, *, a, 1, 0) \in KAT$.

However, not every KA extends to a KAD.

Kleene algebra with domain and PDL

Let $\langle x \rangle y := \mathsf{d}(xy)$. In RKAD, if $P \in 2^{S \times S}$ and $B \subseteq \mathrm{id}_S$:

Kleene algebra with domain and PDL

Lemma 2

The following hold in all Kleene algebras with domain, for all $x, y \in A$ and all $d, e \in d(A)$:

- 1 $\langle x \rangle 0 = 0$ and $\langle 1 \rangle d = d$
- $\exists \langle x + y \rangle d = \langle x \rangle d + \langle y \rangle e$
- $4 \langle xy \rangle d = \langle x \rangle \langle y \rangle d$
- 5 $\langle d \rangle e = de$
- 7 $d + \langle x \rangle e \le e \to \langle x^* \rangle d \le e$

Kleene algebra with domain – The equational theory

The set of KAD-terms Tm is defined using a countable set vrP of program variables as follows:

$$Tm \quad p,q := \mathtt{p}_n \mid 1 \mid 0 \mid p \cdot q \mid p + q \mid p^* \mid \mathtt{a}(p)$$

Equational theory: $\mathsf{KAD} \models p \approx q$ iff v(p) = v(q) for all momomorphisms $v: Tm \to \mathcal{A}$ where $\mathcal{A} \in \mathsf{KAD}$. (Notation: $p \approx q \in Eq(\mathsf{KAD})$.)

 $Eq(KAD^*)$ and Eq(RKAD) are defined as expected.

Relational test algebra

Relational test algebra (Hollenberg, 1997)

Definition 2

A relational test algebra is a structure of the form

$$\mathcal{T} = (\mathcal{K}, \mathcal{B}, \langle \rangle, ?)$$

where, for some $S \neq \emptyset$, **•** $\mathcal{K} = (2^{S \times S}, \circ, \cup, *, 1_S, \emptyset)$ is the full relational Kleene algebra over S; **•** $\mathcal{B} = (2^S, \cap, \cup, {}^-, S, \emptyset)$ is the Boolean algebra of subsets of S; **•** $\langle \rangle : \mathcal{K} \times \mathcal{B} \to \mathcal{B}$ such that $\langle R \rangle X = \{s \mid \exists t.(s,t) \in R \& t \in X\}$; **•** $? : \mathcal{B} \to \mathcal{K}$ such that $X? = \{(s,s) \mid s \in X\}$.

Relational test algebra and KAD

For each \mathcal{T} , we have $\mathcal{T}^{\sim} \in \mathsf{RKAD}$ where $\mathcal{T}^{\sim} = (\mathcal{K}, \sim)$. Note that

$$\begin{split} \sim & R = \{(s,s) \mid \neg \exists t.(s,t) \in R\} \\ &= \{(s,s) \mid \neg \exists t.(s,t) \in R \& t \in S\} \\ &= \{(s,s) \mid s \in \overline{\langle R \rangle S}\} \\ &= (\overline{\langle R \rangle S})? \,. \end{split}$$

Relational test algebra – Program-equational theory

The sets of programs Pr and formulas Fm are defined by mutual induction as follows (using the sets of program variables P and Boolean variables B):

$$\begin{aligned} Pr \quad \alpha, \beta &:= \mathtt{p}_n \mid 1 \mid 0 \mid \alpha; \beta \mid \alpha \cup \beta \mid \alpha^* \mid \varphi? \\ Fm \quad \varphi, \psi &:= \mathtt{b}_n \mid \bot \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \langle \alpha \rangle \varphi. \end{aligned}$$

A program α is even iff p_n occurs in α only if n is even. We define $[\alpha]\varphi := \neg \langle \alpha \rangle \neg \varphi$.

Program-equational theory: the set of valid¹ equations of the form $\alpha \approx \beta$.

Hollenberg (1997) provides a proof system TC such that

$$TC \vdash \alpha \approx \beta \iff \mathsf{RTA} \models \alpha \approx \beta$$
. (4)

 ${}^{1}v(\alpha) = v(\beta)$ for all momomorphisms v from $Pr \cup Fm \to \mathcal{T}$.

Relational test algebra – Program-equational theory

Theorem 1

The following hold:

- **1** RTA $\models \alpha \approx \beta$ iff PDL $\models \varphi(\alpha, \beta)$.
- **2** PDL $\models \varphi$ iff RTA $\models (\varphi?) \approx 1$.
- **3** The program eq. theory of RTA is EXPTIME-complete.

Relational test algebra - The test calculus

Definition 3

 TC extends the axiomatizations of KA (Kozen, 1994) and BA with:

test algebra axioms of (Trnková and Reiterman, 1987) (minus separability)

(T6) $\langle pq \rangle b = \langle p \rangle \langle q \rangle b$ (T7) $\langle p^* \rangle b = b \lor \langle p \rangle \langle p^* \rangle b$

(T9) $\langle b? \rangle c = b \wedge c$

(T8) $\langle p^* \rangle b = b \lor \langle p^* \rangle (\neg b \land \langle p \rangle b)$

$$\begin{array}{ll} (T1) & \langle p \rangle \bot = \bot \\ (T2) & \langle p \rangle (b \lor c) = \langle p \rangle b \lor \langle p \rangle c \\ (T3) & \langle 0 \rangle b = \bot \\ (T4) & \langle 1 \rangle b = b \\ (T5) & \langle p \cup q \rangle b = \langle b \rangle p \lor \langle q \rangle p \end{array}$$

The inference rules are (Kozen's quasi-equations for * and) the usual inference rules of equational logic and uniform (sort-respecting) substitution.

Igor Sedlár (ICS CAS)

On the Complexity of KAD

The embedding results

The main result

We prove that there are functions $\tau: Pr \cup Fm \to Tm$ and $\sigma: Tm \to Pr$ such that, for all even α, β and all even p, q:

- **1** RTA $\models \alpha \approx \beta$ iff KAD $\models \tau(\alpha) \approx \tau(\beta)$ (iff KAD* $\models \tau(\alpha) \approx \tau(\beta)$ iff RKAD $\models \tau(\alpha) \approx \tau(\beta)$)
- **2** KAD $\models p \approx \tau \sigma(p)$ (only if KAD* $\models p \approx \tau \sigma(p)$ and RKAD $\models p \approx \tau \sigma(p)$).
- **3** RTA $\models \sigma(p) \approx \sigma(q)$ iff KAD $\models p \approx q$ (iff KAD* $\models p \approx q$ iff RKAD $\models p \approx q$).

The main result, first part

Definition 4

Let τ be the following function from $Pr \cup Fm \to Tm$:

$$\tau(\mathbf{p}_{2n}) = \mathbf{p}_{2n} \qquad \tau(\mathbf{b}_n) = \mathbf{d}(\mathbf{p}_{2n+1})$$

$$\tau(\mathbf{p}_{2n+1}) = \mathbf{p}_1 \qquad \tau(\bot) = 0$$

$$\tau(1) = 1 \qquad \tau(\neg \varphi) = \mathbf{a}(\tau(\varphi))$$

$$\tau(0) = 0 \qquad \tau(\varphi \land \psi) = \tau(\varphi) \cdot \tau(\psi)$$

$$\tau(\alpha \cup \beta) = \tau(\alpha) + \tau(\beta) \qquad \tau(\varphi \lor \psi) = \tau(\varphi) + \tau(\psi)$$

$$\tau(\alpha; \beta) = \tau(\alpha) \cdot \tau(\beta) \qquad \tau(\langle \alpha \rangle \varphi) = \mathbf{d}(\tau(\alpha) \cdot \tau(\varphi))$$

$$\tau(\alpha^*) = \tau(\alpha)^* \qquad \tau(\varphi?) = \tau(\varphi)$$

For each $\varphi \in Fm$ there is $p \in Tm$ such that $\mathsf{KAD} \models \tau(\varphi) \approx \mathsf{d}(p)$.

The main result, first part

A. If RTA $\not\models \alpha \approx \beta$, then $v(\alpha) \neq v(\beta)$ for some $\mathcal{T} \in \mathsf{RTA}$. Take \mathcal{T}^{\sim} and define w as the unique hom. $Tm \to \mathcal{T}^{\sim}$ such that:

$$w(\mathbf{p}_{2n}) = v(\mathbf{p}_{2n})$$
 $w(\mathbf{p}_{2n+1}) = v(\mathbf{b}_n?)$.

Claim 1. For all γ, φ : $v(\gamma) = w(\tau(\gamma))$ and $v(\varphi?) = w(\tau(\varphi))$

It follows that RKAD
$$\not\models \tau(\alpha) \approx \tau(\beta)$$

(\implies KAD^{*} $\not\models \tau(\alpha) \approx \tau(\beta) \implies$ KAD $\not\models \tau(\alpha) \approx \tau(\beta)$).

B. If RTA $\models \alpha \approx \beta$, then $TC \vdash \alpha \approx \beta$ by Hollenberg's theorem (4). **Claim 2.** For all $\gamma_1, \gamma_2, TC \vdash \gamma_1 \approx \gamma_2$ only if KAD $\models \tau(\gamma_1) \approx \tau(\gamma_2)$ It follows that KAD $\models \tau(\alpha) \approx \tau(\beta)$ (\implies KAD^{*} $\models \tau(\alpha) \approx \tau(\beta) \implies$ RKAD $\models \tau(\alpha) \approx \tau(\beta)$).

The main result, second part

Definition 5

Let $\sigma: Tm \to Pr$ be defined as follows:

$$\sigma(\mathbf{p}_n) = \mathbf{p}_n$$

$$\sigma(1) = \top ?$$

$$\sigma(0) = \bot ?$$

$$\sigma(pq) = \sigma(p); \sigma(q)$$

$$\sigma(p+q) = \sigma(p) \cup \sigma(q)$$

$$\sigma(p^*) = \sigma(p)^*$$

$$\sigma(\mathbf{a}(p)) = ([\sigma(p)]\bot)?$$

Lemma 3

For each even term p, KAD $\models p \approx \tau \sigma(p)$.

Igor Sedlár (ICS CAS)

The main result, second part

Proof of Lemma 3, the interesting case:

τ

$$\begin{aligned} \tau\sigma(\mathsf{a}(p)) &= \tau((\lceil \sigma(p) \rceil \bot)?) \\ &= \tau(\lceil \sigma(p) \rceil \bot) \\ &= \tau(\neg \langle \sigma(p) \rangle \top) \\ &= \mathsf{a}(\tau(\langle \sigma(p) \rangle \top)) \\ &= \mathsf{ad}(\tau\sigma(p) \cdot \tau(\neg \bot)) \\ &\equiv \mathsf{a}(p \cdot \mathsf{a}(0)) \\ &\equiv \mathsf{a}(p). \end{aligned}$$

The main result, third part

$$\begin{split} \mathsf{RTA} &\models \sigma(p) \approx \sigma(q) \text{ iff } (\mathsf{R}) \mathsf{KAD}^{(*)} \models \tau \sigma(p) \approx \tau \sigma(q) \quad \text{(by first part)} \\ & \text{iff } (\mathsf{R}) \mathsf{KAD}^{(*)} \models p \approx q \quad \text{(by second part)} \end{split}$$

In particular,

$$\begin{split} \mathsf{KAD} &\models p \approx q \text{ iff } \mathsf{KAD}^* \models p \approx q \\ \\ \mathsf{iff } \mathsf{RKAD} &\models p \approx q \end{split}$$

Discussion

Discussion

Main results: (Neither is shocking, but good to know.)

- 1. Eq(KAD) is EXPTIME-complete.
- 2. $Eq(KAD) = Eq(KAD^*) = Eq(RKAD).$

Open problem: Identify a natural generalization of KAD with a PSPACE-complete eq. theory.

Thank you!

References I

Jules Desharnais, Bernhard Möller, and Georg Struth. Kleene algebra with domain. *ACM Trans. Comput. Logic*, 7(4):798–833, oct 2006.

Jules Desharnais and Georg Struth.

Internal axioms for domain semirings. Science of Computer Programming, 76(3):181–203, 2011. Special issue on the Mathematics of Program Construction (MPC 2008).

Jeroen Groenendijk and Martin Stokhof.

Dynamic predicate logic.

Linguistics and Philosophy, 14(1):39–100, 1991.

Marco Hollenberg.

Equational axioms of test algebra.

In M. Nielsen and W. Thomas, editors, *International Workshop on Computer Science Logic. CSL* 1997, pages 295–310. Springer, 1997.

Dexter Kozen.

A completeness theorem for Kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366 - 390, 1994.

Dexter Kozen.

Kleene algebra with tests.

ACM Trans. Program. Lang. Syst., 19(3):427-443, May 1997.

References II

Georg Struth.

On the expressive power of Kleene algebra with domain.

Information Processing Letters, 116(4):284–288, 2016.

Věra Trnková and Jan Reiterman.

Dynamic algebras with test.

Journal of Computer and System Sciences, 35(2):229 – 242, 1987.