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monads and equational theories

Monad (M, η, µ)

in Set

functorM : X 7→ M(X)

unit ηX : X →M(X)

multiplication µX :MM(X)→M(X)

MX
ηM //M2X

µ
��

MX
Mηoo M3X

µM //

Mµ
��

M2X
µ
��

MX M2X µ
//MX
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monads and equational theories

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

terms t := x|op(t1, ...tn) for op ∈ Σ

E a set of equations t = s

Deductive system: equational logic
(Reflexivity) ∅ ` t = t
(Symmetry) {t = s} ` s = t
(Transitivity) {t = u, u = s} ` t = s

Models: algebras (A,ΣA) satisfying E

Free model: (Terms(X,Σ)/E,Σ)
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monads and equational theories

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

(Σ, E) is a presentation of (M, η, µ)

The category EM(M) of Eilenberg-Moore algebras for (M, η, µ) is
isomorphic to the category A(Σ, E) of algebras (models) of (Σ, E)

Category EM(M)

objects: (A, α :M(A)→ A)

with α commuting with η, µ

arrows: algebra morphisms

Category A(Σ, E)

objects: models (A,ΣA) of (Σ, E)

arrows: homomorphisms of
(Σ, E)-algebras
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monads and equational theories

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

(Σ, E) is a presentation of (M, η, µ)

The category EM(M) of Eilenberg-Moore algebras for (M, η, µ) is
isomorphic to the category A(Σ, E) of algebras (models) of (Σ, E)

Corollary: equational reasoning on free objects

Free algebra for the monad ∼= (Terms(X,Σ)/E,Σ)
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example: nondeterminism

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations
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τ : X → P(X)

τ(x) = {x1, x2}
τ(x1) = {x1}
...
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example: nondeterminism

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Powerset (non-empty)
monad (P, η, µ)

P : X 7→ {S | S is a non-
empty, finite subset of X}
η : x 7→ {x}
µ : {S1, ..., Sn} 7→

⋃
i Si

Equational theory of semilattices

Σ = binary operation ⊕
axioms of E =

(x ⊕ y)⊕ z
(A)
= x ⊕ (y ⊕ z)

x ⊕ y
(C)
= y ⊕ x

x ⊕ x
(I)
= x
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example: nondeterminism + termination

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

x

x1 x2

x3

τ : X → P∅(X)

τ(x) = {x1, x2}
τ(x1) = ∅
...
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example: nondeterminism + termination

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Powerset (possibly empty)
monad (P∅, η, µ)

P∅ : X 7→ {S | S is a finite
subset of X}
η : x 7→ {x}
µ : {S1, ..., Sn} 7→

⋃
i Si

Equational theory of
semilattices with bottom

Σ = ?, ⊕
axioms of E=

axioms of semilattices

(x ⊕ y)⊕ z
(A)
= x ⊕ (y ⊕ z)

x ⊕ y
(C)
= y ⊕ x

x ⊕ x
(I)
= x

bottom axiom x ⊕ ? = x

(P∅(X),
⋃
, ∅) ∼= (Terms(X,Σ)/E,⊕, ?) 5



example: probability

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

x

x1 x2

x3

1
2

1
2

τ : X → D(X)

τ(x) = 1
2 x1 + 1

2 x2

τ(x1) = 1 x1

...
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example: probability

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Distribution monad (D, η, µ)

D : X 7→ {∆ | ∆ is a
finitely supported
probability distribution
on X}
η : x 7→ 1 x

µ :
∑

i pi∆i 7→
∑

i pi ·∆i

Equational theory of convex algebras

Σ = binary operations +p for all
p ∈ (0, 1)

axioms of E =

(x +q y) +p z
(Ap)
= x +pq (y + p(1−q)

1−pq
z)

x +p y
(Cp)
= y +1−p x

x +p x
(Ip)
= x(

D(X), CSp( , )
) ∼= (

Terms(X,Σ)/E,+p
)
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example: probability+termination (subdistributions)

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

x

x1 x2

x3

1
4

1
2

τ : X → D≤(X)

τ(x) = 1
4 x1 + 1

2 x2

τ(x1) = 0
...

subdistribution =
∑

i pi xi with
∑

i pi ≤ 1
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example: probability+termination (subdistributions)

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Subdistribution monad
(D≤, η, µ)

D≤ : X 7→ {∆ | ∆ is a
finitely supported
probability
subdistribution on X}

Equational theory of
pointed convex algebras

Σ = ? and +p for all p ∈ (0, 1)

axioms of E =

(x +q y) +p z
(Ap)
= x +pq (y + p(1−q)

1−pq
z)

x +p y
(Cp)
= y +1−p x

x +p x
(Ip)
= x
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combining nondeterminism and probability

x

x1 x2 x3 x4

x6

1
2

1
2

1
3

2
3

a transition reaches a set of
probability distributions
{ 1

2x1 + 1
2x2,

1
3x3 + 2

3x4 }
Problem: P ◦ D is not a
monad [Varacca, Winskel 2006]
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+ accounts for probabilistic schedulers
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the monad of convex sets of probability distributions

The monad (C, η, µ) in Set:

C : X 7→ {S | S is a non-empty, convex-closed, finitely generated
set of finitely supported probability distributions over X}

ηX : X → C(X)

ηX : x 7→ { 1 x }

µX : CC(X)→ C(X)

µX :
⋃
i

{∆i} 7→
⋃
i

WMS(∆i)

with WMS : DC(X)→ C(X) the weighted Minkowski sum

WMS(
n∑
i=1

piSi) = {
n∑
i=1

pi ·∆i | for each 1 ≤ i ≤ n, ∆i ∈ Si}

[Jacobs 2008 ...] 9



equational theory for nondeterminism and probability

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Convex sets (non-empty)
of distributions monad
C(X) = {S | S is a

non-empty, convex-closed,
finitely generated set of

finitely supported
probability distributions

over X}

Equational theory of convex semilattices

Σ = ⊕ and +p for all p ∈ (0, 1)

axioms E :

axioms of semilattices
axioms of convex algebras
distributivity axiom (D)

(x⊕ y) +p z
(D)
= (x +p z)⊕ (y +p z)

[Bonchi, Sokolova, V. 2019 and 2021]

10



equational theory for nondeterminism and probability

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Convex sets (non-empty)
of distributions monad
C(X) = {S | S is a

non-empty, convex-closed,
finitely generated set of

finitely supported
probability distributions

over X}

Equational theory of convex semilattices

Σ = ⊕ and +p for all p ∈ (0, 1)

axioms E :

axioms of semilattices
axioms of convex algebras
distributivity axiom (D)

(x⊕ y) +p z
(D)
= (x +p z)⊕ (y +p z)

[Bonchi, Sokolova, V. 2019 and 2021]

(
C(X),

⋃
cc ,WMSp( , )

) ∼= (
Terms(X,Σ)/E,⊕,+p

)
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nondeterminism + probability + termination

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Convex sets
(possibly empty)
of distributions

monad C∅

Equational theory of convex semilattices
with bottom and black-hole

Σ = ?, ⊕, +p for all p ∈ (0, 1)

axioms of E =

axioms of convex semilattices
bottom axiom x ⊕ ? = x
black-hole axiom x +p ? = ?
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nondeterminism + probability + termination, bottom only

Monad (M, η, µ)

in Set
Equational Theory (Σ, E)

for Σ a signature, E a set of equations

⊥-closed convex sets
(possibly empty)

of subdistributions
monad C↓

subdistribution =
∑

i pi xi with
∑

i pi ≤ 1

S is ⊥-closed = if
∑

i pi xi ∈ S then
∑

i qi xi ∈ S with qi ≤ pi

Equational theory of convex semilattices
with bottom

Σ = ?,⊕,+p for all p ∈ (0, 1)

axioms E :

axioms of convex semilattices
bottom axiom x ⊕ ? = x

[Mio, Sarkis, V. 2021]
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application: reasoning on equivalence of transition systems

For transition systems with nondeterminism, probabilities, termina-
tion, combinations...

axiomatizations and equational reasoning for bisimulation
equivalence

x ∼ y i� x = y in the equational theory

proof techniques for trace equivalence (via powerset
construction)

[Bonchi, Pous 2013], [Bonchi, Sokolova, V. 2019]...
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what about distances?
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Monads on Metric Spaces and Quantitative
Equational Theories
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from equivalences to distances

Computational e�ect
(monad in Set)

Equational Theory (Σ, E)

for Σ a signature, E a set of equations

E�ect+distance
(monad in Met)

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences
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monads on metric spaces

Monad (M, η, µ)

in Set

functorM : X 7→ M(X)

unit ηX : X →M(X)

multiplication µX :M(M(X))→M(X)

Monad (M̂, η̂, µ̂)

in Met

Metric Space (X, d)
X a set

d : X × X → [0, 1] a metric on X

functor M̂ : (X, d) 7→ (M(X), liftM(d))

with liftM : metric on X 7→ metric onM(X)

unit and multiplication are non-expansive 16



the powerset monad, on metric spaces

The powerset monad (P, η, µ) can be lifted to a monad (P̂, η̂, µ̂) in
Met:

P̂ : (X, d) 7→ (P(X),H(d)) H(d) = Hausdor� lifting of d

17
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P̂ : (X, d) 7→ (P(X),H(d)) H(d) = Hausdor� lifting of d

x1

x2

x3

x4

x5

d

H(d)

H(d)(S1, S2) = max
{

sup
x∈S1

inf
y∈S2

d(x, y) , sup
y∈S2

inf
x∈S1

d(x, y)
}
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the powerset monad, on metric spaces

The powerset monad (P, η, µ) can be lifted to a monad (P̂, η̂, µ̂) in
Met:

P̂ : (X, d) 7→ (P(X),H(d)) H(d) = Hausdor� lifting of d

x1

x2

x3

x4

x5

d

H(d)

η̂(X,d) : (X, d)→ (P(X),H(d)) and
µ̂(X,d) :

(
PP(X),H(H(d))

)
→ (P(X),H(d))

non-expansive
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the distribution monad, on metric spaces

The distribution monad (D, η, µ) can be lifted to a monad (D̂, η̂, µ̂) in
Met:

D̂ : (X, d) 7→ (D(X), K(d)) K(d) = Kantorovich
lifting of d
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1
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2
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+

d

K(d)

K(d)(∆1,∆2) = inf
ω∈Coup(∆1,∆2)

( ∑
(x1,x2)∈X×X

ω(x1, x2) · d(x1, x2)
)

with Coup(∆1,∆2) the set of couplings of ∆1 and ∆2, i.e., probability

distributions on X × X such that the marginals of ω are ∆1 and ∆2
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the monad of convex sets of distributions, on metric spaces

The monad (C, η, µ) of convex sets of distributions can be lifted to a
monad (Ĉ, η̂, µ̂) in Met:

Ĉ : (X, d) 7→ (C(X),HK(d)) HK(d) = Hausdor�-Kantorovich
lifting of d
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monad (Ĉ, η̂, µ̂) in Met:
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from equivalences to distances

Computational e�ect
(monad in Set)

Equational Theory (Σ, E)

for Σ a signature, E a set of equations

E�ect+distance
(monad in Met)

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

20



quantitative equational theories

Signature Σ = set of operations op, each with its arity

terms t := x|op(t1, ...tn) ∀op ∈ Σ
quantitative equations t =ε s
Q a set of quantitative inferences {ti =εi si}i∈I ` t =ε s

Deductive system of quantitative equational logic

(Reflexivity) ∅ ` t =0 t
(Symmetry) {t =ε s} ` s =ε t
(Triangular) {t =ε1 u, u =ε2 s} ` t =ε1+ε2 s

Models: quantitative algebras (A,ΣA, dA) satisfying Q

t =ε s is satisfied if ∀ι : X → A, dA(JtKιA, JsK
ι
A) ≤ ε

Quantitative algebra of terms modulo equations:

(Terms(X,Σ)/Q,Σ, d(Σ,Q))

with d(Σ,Q) = (t, t′) 7→ inf{ε | ∅ ` t =ε t′}

[Mardare, Panangaden, Plotkin 2016...] 21
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monads on metric spaces and quantitative equational theories

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

(Σ,Q) is a presentation of (M̂, η̂, µ̂)

The category EM(M̂) of Eilenberg-Moore algebras for (M̂, η̂, µ̂) is
isomorphic to the category QA(Σ,Q) of quantitative (Σ,Q)-algebras

Corollary: equational reasoning on free objects

Free quantitative algebra for the monad ∼= (Terms(X,Σ)/Q,Σ, d(Σ,Q))

22



the quantitative equational theory of semilattices

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

Powerset
(non-empty) monad

in Met, with
Hausdor� lifting

Quantitative equational theory of semilattices

Σ = ⊕
quantitative inferences Q =

• axioms of semilattices,

with t = t′ becoming ∅ ` t =0 t′

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 ⊕ x2 =max(ε1,ε2) y1 ⊕ y2
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the quantitative equational theory of semilattices

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

Powerset
(non-empty) monad

in Met, with
Hausdor� lifting

Quantitative equational theory of semilattices

Σ = ⊕
quantitative inferences Q =

• axioms of semilattices,

with t = t′ becoming ∅ ` t =0 t′

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 ⊕ x2 =max(ε1,ε2) y1 ⊕ y2

(
P(X),

⋃
,H(d)

) ∼= (
Terms(X,Σ)/Q,⊕, d(Σ,Q)

)
23



the quantitative equational theory of convex algebras

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

Distribution monad
in Met, with

Kantorovich lifting

Quantitative equational theory
of convex algebras

Σ = +p for all p ∈ (0, 1)

quantitative inferences Q =

• axioms of convex algebras,

with t = t′ becoming ∅ ` t =0 t′

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 +p x2 =p·ε1+(1−p)·ε2 y1 +p y2
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the quantitative equational theory of convex algebras

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

Distribution monad
in Met, with

Kantorovich lifting

Quantitative equational theory
of convex algebras

Σ = +p for all p ∈ (0, 1)

quantitative inferences Q =

• axioms of convex algebras,

with t = t′ becoming ∅ ` t =0 t′

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 +p x2 =p·ε1+(1−p)·ε2 y1 +p y2

(
D(X), CSp( , ), K(d)

) ∼= (
Terms(X,Σ)/Q,+p, d(Σ,Q)

)
24



the quantitative equational theory of convex semilattices

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

Convex sets
(non-empty) of

distributions monad
in Met, with
Hausdor�–

Kantorovich lifting

Quantitative equational theory
of convex semilattices

Σ = ⊕ and +p for all p ∈ (0, 1)

quantitative inferences Q =

• axioms of convex semilattices,

with t = t′ becoming ∅ ` t =0 t′

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 ⊕ x2 =max(ε1,ε2) y1 ⊕ y2

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 +p x2 =p·ε1+(1−p)·ε2 y1 +p y2

[Mio, V. 2020]
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the quantitative equational theory of convex semilattices

Monad (M̂, η̂, µ̂)

in Met

Quantitative Equational Theory (Σ,Q)

for Σ a signature, Q quantitative inferences

Convex sets
(non-empty) of

distributions monad
in Met, with
Hausdor�–

Kantorovich lifting

Quantitative equational theory
of convex semilattices

Σ = ⊕ and +p for all p ∈ (0, 1)

quantitative inferences Q =

• axioms of convex semilattices,

with t = t′ becoming ∅ ` t =0 t′

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 ⊕ x2 =max(ε1,ε2) y1 ⊕ y2

•
{
x1 =ε1 y1, x2 =ε2 y2

}
` x1 +p x2 =p·ε1+(1−p)·ε2 y1 +p y2

[Mio, V. 2020](
C(X),

⋃
cc ,WMSp( , ),HK(d)

) ∼= (
Terms(X,Σ)/Q,⊕,+p, d(Σ,Q)

)
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recap: adding termination, in sets

Monad (M̂, η̂, µ̂)

in Met

Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Convex sets
(possibly empty)
of distributions

monad C∅

Equational theory of convex semilattices
with bottom x ⊕ ? = x

and black-hole x +p ? = ?

⊥-closed convex sets
(possibly empty)

of subdistributions
monad C⊥

Equational theory of convex semilattices
with bottom x ⊕ ? = x

26



lifting to met

Convex sets
(possibly empty)
of distributions

monad C∅

Equational theory of convex semilattices
with bottom x ⊕ ? = x

and black-hole x +p ? = ?

Negative results in Met:
The quantitative equational theory of convex semilattices with
bottom and black-hole is trivial
The multiplication µ of C∅ is not non-expansive⇒ the same
monad cannot be lifted to Met

⊥-closed convex sets
(possibly empty)

of subdistributions
monad C↓

Equational theory of convex semilattices
with bottom x ⊕ ? = x

⊥-closed convex sets
(possibly empty)

of subdistributions
monad in Met
C↓ with HK

Quantitative equational theory of convex
semilattices with bottom x ⊕ ? = x

[Mio, Sarkis, V. 2021] 27



lifting to met

Convex sets
(possibly empty)
of distributions

monad C∅

Equational theory of convex semilattices
with bottom x ⊕ ? = x

and black-hole x +p ? = ?

Negative results in Met:
The quantitative equational theory of convex semilattices with
bottom and black-hole is trivial
The multiplication µ of C∅ is not non-expansive⇒ the same
monad cannot be lifted to Met

⊥-closed convex sets
(possibly empty)

of subdistributions
monad C↓

Equational theory of convex semilattices
with bottom x ⊕ ? = x

⊥-closed convex sets
(possibly empty)

of subdistributions
monad in Met
C↓ with HK

Quantitative equational theory of convex
semilattices with bottom x ⊕ ? = x

[Mio, Sarkis, V. 2021] 27



lifting to met

Convex sets
(possibly empty)
of distributions

monad C∅

Equational theory of convex semilattices
with bottom x ⊕ ? = x

and black-hole x +p ? = ?

Negative results in Met:
The quantitative equational theory of convex semilattices with
bottom and black-hole is trivial
The multiplication µ of C∅ is not non-expansive⇒ the same
monad cannot be lifted to Met

⊥-closed convex sets
(possibly empty)

of subdistributions
monad C↓

Equational theory of convex semilattices
with bottom x ⊕ ? = x

⊥-closed convex sets
(possibly empty)

of subdistributions
monad in Met
C↓ with HK

Quantitative equational theory of convex
semilattices with bottom x ⊕ ? = x

[Mio, Sarkis, V. 2021] 27



recap

Convex sets (non-empty)
of distributions

monad C
Equational theory of convex semilattices

Convex sets
(possibly empty)
of distributions

monad C∅

Equational theory of convex semilattices
with bottom x ⊕ ? = x

and black-hole x +p ? = ?

YE
S

in
M

et
NO

in
M

et
YE

S
in

M
et ⊥-closed convex sets

(possibly empty)
of subdistributions

monad C↓

Equational theory of convex semilattices
with bottom x ⊕ ? = x

28



application: bisimulation distances

x

x1 x2 x3 x4

x5 x6

1
2

1
2

1
3

2
3

x

x1 x2 x3 x4

x5 x6

1
2

1
2

1
3−ε

2
3 +ε

∼ε

A sound and complete proof technique for bisimulation distance

x ∼ε y i� x =ε y in the quantitative equational theory

[Mio, Sarkis, V. 2021]
29



Varying the liftings

29



varying the liftings

[Castro et al. 2021]

A metric? Presented by a quantitative equational theory ?

Di�erent ways of lifting a metric d to probability distributions D(X)

Kantorovich lifting on probability distributions

K(d)(∆1,∆2) = inf
ω∈Coup(∆1,∆2)

( ∑
(x1,x2)∈X×X

ω(x1, x2) · d(x1, x2)
)

with Coup(∆1,∆2) the set of couplings of ∆1 and ∆2, i.e., probability

distributions on X × X such that the marginals of ω are ∆1 and ∆2

Łukaszyk–Karmowski lifting on probability distributions

ŁK(d)(∆1,∆2) =
∑

x∈supp(∆1)

∑
y∈supp(∆2)

∆1(x) ·∆2(y) · d(x, y)
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varying the liftings

[Castro et al. 2021]

A metric? Presented by a quantitative equational theory ?

Di�erent ways of lifting a metric d to probability distributions D(X)

Kantorovich lifting on probability distributions

K(d)(∆1,∆2) = inf
ω∈Coup(∆1,∆2)

( ∑
(x1,x2)∈X×X

ω(x1, x2) · d(x1, x2)
)

with Coup(∆1,∆2) the set of couplings of ∆1 and ∆2, i.e., probability

distributions on X × X such that the marginals of ω are ∆1 and ∆2

Łukaszyk–Karmowski lifting on probability distributions

ŁK(d)(∆1,∆2) =
∑

x∈supp(∆1)

∑
y∈supp(∆2)

∆1(x) ·∆2(y) · d(x, y)
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issues with the łk distance: metric constraints

(X, d : X × X → [0, 1]) is a metric space i�

1 d(x, x) = 0

2 d(x, y) = d(y, x)

3 d(x, z) ≤ d(x, y) + d(y, z)

4 d(x, y) = 0 ⇒ x = y

For (X, d) a metric space, (D(X), ŁK(d)) is not a metric space

∃∆ such that ŁK(d)(∆,∆) > 0
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issues with the łk distance: metric constraints

(X, d : X × X → [0, 1]) is a metric space i�

1 d(x, x) = 0

2 d(x, y) = d(y, x)

3 d(x, z) ≤ d(x, y) + d(y, z)

4 d(x, y) = 0 ⇒ x = y

For (X, d) a metric space, (D(X), ŁK(d)) is not a metric space

∃∆ such that ŁK(d)(∆,∆) > 0

Solution: generalised metric spaces

31



generalised metric spaces

(X, d) with d a function d : X × X → [0, 1] (aka “fuzzy relation”)

d may satisfy a subset of:

1 d(x, x) = 0
2 d(x, y) = d(y, x)
3 d(x, z) ≤ d(x, y) + d(y, z)
4 d(x, y) = 0 ⇒ x = y
5 d(x, z) ≤ max{d(x, y), d(y, z)}

Examples:

Metric spaces := 1 + 2 + 3 + 4
Ultrametric spaces := 1 + 2 + 3 + 4 + 5
Pseudo-metric spaces := 1 + 2 + 3
Di�use metric spaces := 2 + 3 32



issues with the łk distance: nonexpansiveness

In the deductive system of quantitative equational theories: opera-
tions are required to be nonexpansive wrt the product metric

s1 =ε1 t1, ..., sn =εn tn ` op(s1, ..., sn) =max{ε1,...,εn} op(t1, ..., tn)

i.e., in all quantitative algebras (A,ΣA, dA), operations define a non-
expansive map opA : (An, L×(d))→ (A, d) , where

L×(d)((a1, ..., an), (a′1, ..., a
′
n)) = max

i
{d(ai, a′i)}

In (D(X), ŁK(d)), the operation +p is not nonexpansive wrt to the
product metric, i.e., ∃∆1,∆2,∆

′
1,∆

′
2 such that

ŁK(d)(∆1 + 1
2

∆2,∆
′
1 + 1

2
∆′2) > L×(ŁK(d))((∆1,∆

′
1), (∆2,∆

′
2))
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issues with the łk distance: nonexpansiveness

In the deductive system of quantitative equational theories: opera-
tions are required to be nonexpansive wrt the product metric

s1 =ε1 t1, ..., sn =εn tn ` op(s1, ..., sn) =max{ε1,...,εn} op(t1, ..., tn)

i.e., in all quantitative algebras (A,ΣA, dA), operations define a non-
expansive map opA : (An, L×(d))→ (A, d) , where

L×(d)((a1, ..., an), (a′1, ..., a
′
n)) = max

i
{d(ai, a′i)}

In (D(X), ŁK(d)), the operation +p is not nonexpansive wrt to the
product metric, i.e., ∃∆1,∆2,∆

′
1,∆

′
2 such that

ŁK(d)(∆1 + 1
2

∆2,∆
′
1 + 1

2
∆′2) > L×(ŁK(d))((∆1,∆

′
1), (∆2,∆

′
2))

Solution: remove the nonexpansiveness requirement
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a generalised framework for quantitative equational reasoning

e�ect+distance
(monad in GMet)

(generalised) quantitative equational theory

monads in Met
seen so far

(generalised) quantitative equational theories
corresponding to those seen so far

distribution monad
D̂ in DMet, with

Łukaszyk–Karmowski
lifting

(generalised) quantitative equational theory

Σ = +p for all p ∈ (0, 1)

equations and quantitative inferences:
• axioms of convex algebras,
• quantitative axiom{

x1 =ε11 x1, x2 =ε21 x1

x1 =ε12 y2, y2 =ε22 y2

}
` x1 +p x2 =δ y1 +p y2

with δ = p2ε11 + (1− p)pε21 + p(1− p)ε12 + (1− p)2ε22

[Mio, Sarkis, V. 2022]

Extend the framework of quantitative equational theories to include:

generalised metric spaces
operations which are not nonexpansive

How?

separate equality from quantitative equality: equations and
quantitative equations coexist, with relationship determined by
axioms

x = y di�erent from x =0 y

remove rule of nonexpansiveness, and allow for arbitrary
operations

⇒ a new framework for quantitative equational reasoning, with a
sound and complete deductive apparatus
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a generalised framework for quantitative equational reasoning

e�ect+distance
(monad in GMet)

(generalised) quantitative equational theory

monads in Met
seen so far

(generalised) quantitative equational theories
corresponding to those seen so far

distribution monad
D̂ in DMet, with

Łukaszyk–Karmowski
lifting

(generalised) quantitative equational theory

Σ = +p for all p ∈ (0, 1)

equations and quantitative inferences:
• axioms of convex algebras,
• quantitative axiom{

x1 =ε11 x1, x2 =ε21 x1

x1 =ε12 y2, y2 =ε22 y2

}
` x1 +p x2 =δ y1 +p y2

with δ = p2ε11 + (1− p)pε21 + p(1− p)ε12 + (1− p)2ε22
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bisimulation equivalence (probabilistic)

E�ect: probabilities τ : X → D(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to D(X) defined as:
∆1 R̂ ∆2 i� ∀A ∈ X/R, ∆1(A) = ∆2(A)
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bisimulation equivalence (probabilistic)

E�ect: probabilities τ : X → D(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to D(X) defined as:
∆1 R̂ ∆2 i� ∀A ∈ X/R, ∆1(A) = ∆2(A)

(
D(X), CSp( , )

) ∼= (
Terms(X,Σ)/E,+p

)
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bisimulation equivalence (probabilistic)

E�ect: probabilities τ : X → D(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to D(X) defined as:
∆1 R̂ ∆2 i� ∀A ∈ X/R, ∆1(A) = ∆2(A)

(
D(X), CSp( , )

) ∼= (
Terms(X,Σ)/E,+p

)
∆1 = ∆2 i� ∅ ` t∆1 = t∆2

where ` is derivability in the theory of
convex algebras
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bisimulation equivalence (probabilistic)

E�ect: probabilities τ : X → D(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to D(X) defined as:
∆1 R̂ ∆2 i� ∀A ∈ X/R, ∆1(A) = ∆2(A)

(
D(X), CSp( , )

) ∼= (
Terms(X,Σ)/E,+p

)
∆1 = ∆2 i� ∅ ` t∆1 = t∆2

where ` is derivability in the theory of
convex algebras

∆1 R̂ ∆2 i� ∅ `R t∆1 = t∆2

where `R is derivability in the theory of
convex algebras+equations induced by R

35



bisimulation equivalence (nondeterminism+termination)

E�ect: nondeterminism+termination τ : X → P∅(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to P∅(X) defined as:
S1 R̂ S2 i� ∀x′ ∈ S1∃y′ ∈ S2 s.t. x′ R y′ and ∀y′ ∈ S2∃x′ ∈ S1 s.t. x′ R y′

S1 R̂ S2 i� ∅ `R tS1 = tS2

where `R is derivability in the theory of
semilattices with bottom+equations

induced by R
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bisimulation equivalence (nondeterminism+termination)

E�ect: nondeterminism+termination τ : X → P∅(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to P∅(X) defined as:
S1 R̂ S2 i� ∀x′ ∈ S1∃y′ ∈ S2 s.t. x′ R y′ and ∀y′ ∈ S2∃x′ ∈ S1 s.t. x′ R y′

S1 R̂ S2 i� ∅ `R tS1 = tS2

where `R is derivability in the theory of
semilattices with bottom+equations

induced by R
More generally:

bisimulation: we lift a relation R on X to a relation R̂ on the
chosen e�ect over X

by the correspondence e�ect/equational theory, we can reason
equationally on R̂ 36



from equivalences to metrics

E�ect: probabilities τ : X → D(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to D(X) defined as:
∆1 R̂ ∆2 i� ∀A ∈ X/R, ∆1(A) = ∆2(A)

E�ect: probabilities τ : X → D(X)

Metric d on X such that d(x, y) ≤ ε implies d̂(τ(x), τ(y)) ≤ ε

with d̂ is a lifting of d to D(X) defined as: the Kantorovich lifting K(d)

K(d)(∆1,∆2) = inf
ω∈Coup(∆1,∆2)

( ∑
(x1,x2)∈X×X

ω(x1, x2) · d(x1, x2)
)

with Coup(∆1,∆2) the set of couplings of ∆1 and ∆2, i.e., probability

distributions on X × X such that the marginals of ω are ∆1 and ∆2

37



from equivalences to metrics

E�ect: probabilities τ : X → D(X)

Equivalence relation R on X such that x R y implies τ(x) R̂ τ(y)

with R̂ a lifting of R to D(X) defined as:
∆1 R̂ ∆2 i� ∀A ∈ X/R, ∆1(A) = ∆2(A)

E�ect: probabilities τ : X → D(X)

Metric d on X such that d(x, y) ≤ ε implies d̂(τ(x), τ(y)) ≤ ε

with d̂ is a lifting of d to D(X) defined as: the Kantorovich lifting K(d)

K(d)(∆1,∆2) = inf
ω∈Coup(∆1,∆2)

( ∑
(x1,x2)∈X×X

ω(x1, x2) · d(x1, x2)
)

with Coup(∆1,∆2) the set of couplings of ∆1 and ∆2, i.e., probability

distributions on X × X such that the marginals of ω are ∆1 and ∆2

How to reason equationally on distances? 37



equational reasoning for bisimulation metrics

E�ect: probabilities τ : X → D(X)

Metric d on X such that d(x, y) ≤ ε implies d̂(τ(x), τ(y)) ≤ ε

with d̂ is a lifting of d to D(X) defined as: the Kantorovich lifting K(d)
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equational reasoning for bisimulation metrics

E�ect: probabilities τ : X → D(X)

Metric d on X such that d(x, y) ≤ ε implies d̂(τ(x), τ(y)) ≤ ε

with d̂ is a lifting of d to D(X) defined as: the Kantorovich lifting K(d)

(
D(X), CSp( , ), K(d)

) ∼= (
Terms(X,Σ)/Q,+p, d(Σ,Q)

)
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equational reasoning for bisimulation metrics

E�ect: probabilities τ : X → D(X)

Metric d on X such that d(x, y) ≤ ε implies d̂(τ(x), τ(y)) ≤ ε

with d̂ is a lifting of d to D(X) defined as: the Kantorovich lifting K(d)

(
D(X), CSp( , ), K(d)

) ∼= (
Terms(X,Σ)/Q,+p, d(Σ,Q)

)
K(d)(∆1,∆2) ≤ ε i� ∅ `d t∆1 =ε t∆2

where `d is derivability in the quantitative equational theory
of convex algebras+quantitative equations induced by d

38
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