EQUATIONAL THEORIES AND DISTANCES FOR

 COMPUTATIONAL EFFECTSValeria Vignudelli

CNRS, ENS Lyon

IN THIS TALK

Computational effect (monad in Set)

Equational Theory (Σ, E)
 for Σ a signature, E a set of equations

IN THIS TALK

Computational effect

 (monad in Set)
Equational Theory (Σ, E)
 for Σ a signature, E a set of equations

Effects: nondeterminism, probabilities, termination, combinations

IN THIS TALK

Computational effect (monad in Set)

Equational Theory (Σ, E)

for Σ a signature, E a set of equations

Effects: nondeterminism, probabilities, termination, combinations

IN THIS TALK

Computational effect (monad in Set)

Equational Theory (Σ, E)

 for Σ a signature, E a set of equationsEffects: nondeterminism, probabilities, termination, combinations

IN THIS TALK

Computational effect

Equational Theory (Σ, E)

 (monad in Set) for Σ a signature, E a set of equationsEffects: nondeterminism, probabilities, termination, combinations

IN THIS TALK

Computational effect (monad in Set)

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Effects: nondeterminism, probabilities, termination, combinations

- reasoning equationally on equivalences of systems

■ what about reasoning equationally on distances?

IN THIS TALK

MoNads and Equational Theories for COMPUTATIONAL EfFECTS

MONADS AND EQUATIONAL THEORIES

Monad ($\mathcal{M}, \eta, \mu)$ in Set

■ functor $\mathcal{M}: X \mapsto \mathcal{M}(X)$
■ unit $\eta_{X}: X \rightarrow \mathcal{M}(X)$
■ multiplication $\mu_{X}: \mathcal{M} \mathcal{M}(X) \rightarrow \mathcal{M}(X)$

MONADS AND EQUATIONAL THEORIES

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

■ terms $t:=x \mid o p\left(t_{1}, \ldots t_{n}\right)$ for $o p \in \Sigma$

- E a set of equations $t=s$

Deductive system: equational logic (Reflexivity) $\emptyset \vdash t=t$
(Symmetry) $\{t=s\} \vdash s=t$
(Transitivity) $\{t=u, u=s\} \vdash t=s$
Models: algebras $\left(A, \Sigma^{A}\right)$ satisfying E
Free model: $\left(\operatorname{Terms}(X, \Sigma)_{/ E}, \Sigma\right)$

MONADS AND EQUATIONAL THEORIES

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

(Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category $\mathbf{E M}(\mathcal{M})$ of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category $\mathbf{A}(\Sigma, E)$ of algebras (models) of (Σ, E)

Category EM(M)

- objects: $(A, \alpha: \mathcal{M}(A) \rightarrow A)$ with α commuting with η, μ

■ arrows: algebra morphisms

Category $\mathbf{A}(\Sigma, E)$

- objects: models $\left(A, \Sigma^{A}\right)$ of (Σ, E)

■ arrows: homomorphisms of (Σ, E)-algebras

MONADS AND EQUATIONAL THEORIES

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for \sum a signature, E a set of equations

(Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category $\mathbf{E M}(\mathcal{M})$ of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category $\mathbf{A}(\Sigma, E)$ of algebras (models) of (Σ, E)

Corollary: equational reasoning on free objects
Free algebra for the monad $\cong\left(\operatorname{Terms}(X, \Sigma)_{/ E}, \Sigma\right)$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Set

Powerset (non-empty) monad (\mathcal{P}, η, μ)

- $\mathcal{P}: X \mapsto\{S \mid S$ is a nonempty, finite subset of $X\}$
- $\eta: x \mapsto\{x\}$

■ $\mu:\left\{S_{1}, \ldots, S_{n}\right\} \mapsto \bigcup_{i} S_{i}$

Equational Theory (Σ, E)

 for Σ a signature, E a set of equations
Equational theory of semilattices

■ Σ = binary operation \oplus

- axioms of $E=$

$$
\begin{array}{ccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(I)}{=} & x
\end{array}
$$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of semilattices

- $\Sigma=$ binary operation \oplus
- axioms of $E=$
- $\mathcal{P}: X \mapsto\{S \mid S$ is a nonempty, finite subset of $X\}$
- $\eta: x \mapsto\{x\}$

■ $\mu:\left\{S_{1}, \ldots, S_{n}\right\} \mapsto \bigcup_{i} S_{i}$

$$
\begin{array}{ccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(I)}{=} & x
\end{array}
$$

$$
(\mathcal{P}(X), \bigcup) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E}, \oplus\right)
$$

EXAMPLE: NONDETERMINISM + TERMINATION

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

EXAMPLE: NONDETERMINISM + TERMINATION

Monad (\mathcal{M}, η, μ)
in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of
semilattices with bottom

- $\Sigma=\star, \oplus$
- axioms of $E=$
- axioms of semilattices

$$
\begin{array}{ccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(1)}{=} & x
\end{array}
$$

- bottom axiom $x \oplus \star=x$

$$
\left(\mathcal{P}^{\emptyset}(X), \bigcup, \emptyset\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E}, \oplus, \star\right)
$$

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E)

 for Σ a signature, E a set of equationsDistribution monad (\mathcal{D}, η, μ)

- $\mathcal{D}: X \mapsto\{\Delta \mid \Delta$ is a finitely supported probability distribution on $X\}$

■ $\eta: x \mapsto 1 x$

- $\mu: \sum_{i} p_{i} \Delta_{i} \mapsto \sum_{i} p_{i} \cdot \Delta_{i}$

Equational theory of convex algebras

- $\Sigma=$ binary operations $+_{p}$ for all

$$
p \in(0,1)
$$

- axioms of $E=$

$$
\begin{array}{ccc}
\left(x+_{q} y\right)+_{p} z & \stackrel{\left(A_{p}\right)}{=} & x+_{p q}\left(y+_{\frac{p(1-q)}{1-p q}} z\right) \\
x+_{p} y & \stackrel{\left(C_{p}\right)}{=} & y+_{1-p} x \\
x+_{p} x & \stackrel{\left(\rho_{p}\right)}{=} & x
\end{array}
$$

$$
\left(\mathcal{D}(X), \operatorname{CS}_{p}(-,-)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E},+_{p}\right)
$$

example: Probability+termination (subdistributions)

Monad (\mathcal{M}, η, μ)

in Set $\Longleftrightarrow \quad$| Equational Theory (Σ, E) |
| :---: |
| for Σ a signature, E a set of equations |

subdistribution $=\sum_{i} p_{i} x_{i}$ with $\sum_{i} p_{i} \leq 1$

EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of pointed convex algebras

- $\Sigma=\star$ and $+_{p}$ for all $p \in(0,1)$
- axioms of $E=$

$$
\begin{array}{ccc}
\left(x++_{q} y\right)+_{p} z & \stackrel{\left(A_{p}\right)}{=} & x+_{p q}\left(y+\frac{p(1-q)}{1-p q} z\right) \\
x+_{p} y & \stackrel{\left(C_{p}\right)}{=} & y+_{1-p} x \\
x+_{p} x & \stackrel{\left(l_{p}\right)}{=} & x
\end{array}
$$

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions
$\left\{\frac{1}{2} x_{1}+\frac{1}{2} x_{2}, \frac{1}{3} x_{3}+\frac{2}{3} x_{4}\right\}$
■ Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions
$\left\{\frac{1}{2} x_{1}+\frac{1}{2} x_{2}, \frac{1}{3} x_{3}+\frac{2}{3} x_{4}\right\}$
■ Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

Solution: use convex sets of probability distributions

$$
\left\{\frac{1}{2} x_{1}+\frac{1}{2} x_{2}, \ldots, \frac{1}{4} x_{1}+\frac{1}{4} x_{2}+\frac{1}{6} x_{3}+\frac{1}{3} x_{4}, \ldots, \frac{1}{3} x_{3}+\frac{2}{3} x_{4}\right\}
$$

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions
$\left\{\frac{1}{2} x_{1}+\frac{1}{2} x_{2}, \frac{1}{3} x_{3}+\frac{2}{3} x_{4}\right\}$
- Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

Solution: use convex sets of probability distributions

$$
\left\{\frac{1}{2} x_{1}+\frac{1}{2} x_{2}, \ldots, \frac{1}{4} x_{1}+\frac{1}{4} x_{2}+\frac{1}{6} x_{3}+\frac{1}{3} x_{4}, \ldots, \frac{1}{3} x_{3}+\frac{2}{3} x_{4}\right\}
$$

+ accounts for probabilistic schedulers

THE MONAD OF CONVEX SETS OF PROBABILITY DISTRIBUTIONS

The monad (\mathcal{C}, η, μ) in Set:
■ $\mathcal{C}: X \mapsto\{S \mid S$ is a nonempty, convex-closed, finitely generated set of finitely supported probability distributions over $X\}$

- $\eta_{X}: X \rightarrow \mathcal{C}(X)$

$$
\eta_{x}: x \mapsto\{1 x\}
$$

- $\mu_{x}: \mathcal{C C}(X) \rightarrow \mathcal{C}(X)$

$$
\mu_{X}: \bigcup_{i}\left\{\Delta_{i}\right\} \mapsto \bigcup_{i} \operatorname{wMS}\left(\Delta_{i}\right)
$$

with WMS : $\mathcal{D C}(X) \rightarrow \mathcal{C}(X)$ the weighted Minkowski sum

$$
\operatorname{WMS}\left(\sum_{i=1}^{n} p_{i} S_{i}\right)=\left\{\sum_{i=1}^{n} p_{i} \cdot \Delta_{i} \mid \text { for each } 1 \leq i \leq n, \Delta_{i} \in S_{i}\right\}
$$

EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Monad (\mathcal{M}, η, μ) in Set

Convex sets (non-empty) of distributions monad

$$
\mathcal{C}(X)=\{S \mid S \text { is a }
$$

non-empty, convex-closed, finitely generated set of
finitely supported probability distributions over $X\}$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of convex semilattices

- $\Sigma=\oplus$ and $+{ }_{p}$ for all $p \in(0,1)$
- axioms E:
- axioms of semilattices

■ axioms of convex algebras

- distributivity axiom (D)

$$
(x \oplus y)+{ }_{p} z \stackrel{(D)}{=}\left(x+_{p} z\right) \oplus\left(y+_{p} z\right)
$$

[Bonchi, Sokolova, V. 2019 and 2021]

EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Monad (\mathcal{M}, η, μ) in Set

Convex sets (non-empty) of distributions monad

$$
\mathcal{C}(X)=\{S \mid S \text { is a }
$$

non-empty, convex-closed, finitely generated set of
finitely supported probability distributions over $X\}$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of convex semilattices

- $\Sigma=\oplus$ and $+{ }_{p}$ for all $p \in(0,1)$
- axioms E:
- axioms of semilattices

■ axioms of convex algebras

- distributivity axiom (D)

$$
(x \oplus y)+{ }_{p} z \stackrel{(D)}{=}\left(x+_{p} z\right) \oplus\left(y+_{p} z\right)
$$

[Bonchi, Sokolova, V. 2019 and 2021]

$$
\left(\mathcal{C}(X), \llbracket, \operatorname{WMS}_{p}(-,-)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E}, \oplus,+_{p}\right)
$$

NONDETERMINISM + PROBABILITY + TERMINATION

Monad ($\mathcal{M}, \eta, \mu)$ in Set
\Leftrightarrow

Convex sets
(possibly empty)
of distributions
monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom and black-hole

> Equational Theory (Σ, E) for Σ a signature, E a set of equations

■ $\Sigma=\star, \oplus,+{ }_{p}$ for all $p \in(0,1)$

- axioms of $E=$
- axioms of convex semilattices
\square bottom axiom $x \oplus \star=x$
- black-hole axiom $x+_{p} \star=\star$

NONDETERMINISM + PROBABILITY + TERMINATION, BOTTOM ONLY

Monad (\mathcal{M}, η, μ) in Set

Equational theory of convex semilattices with bottom

■ $\Sigma=\star, \oplus,+{ }_{p}$ for all $p \in(0,1)$
■ axioms E :

- axioms of convex semilattices
- bottom axiom $x \oplus \star=x$
[Mio, Sarkis, V. 2021]

■ subdistribution $=\sum_{i} p_{i} x_{i}$ with $\sum_{i} p_{i} \leq 1$
$\square S$ is \perp-closed $=$ if $\sum_{i} p_{i} x_{i} \in S$ then $\sum_{i} q_{i} x_{i} \in S$ with $q_{i} \leq p_{i}$

APPLICATION: REASONING ON EQUIVALENCE OF TRANSITION SYSTEMS

For transition systems with nondeterminism, probabilities, termination, combinations...

- axiomatizations and equational reasoning for bisimulation equivalence

$$
x \sim y \quad \text { iff } \quad x=y \text { in the equational theory }
$$

■ proof techniques for trace equivalence (via powerset construction)
[Bonchi, Pous 2013], [Bonchi, Sokolova, V. 2019]...

WHAT ABOUT DISTANCES?

Monads on Metric Spaces and Quantitative
 Equational Theories

FROM EQUIVALENCES TO DISTANCES

Computational effect (monad in Set)

Effect+distance
(monad in Met)

MONADS ON METRIC SPACES

Monad (\mathcal{M}, η, μ) in Set

■ functor $\mathcal{M}: X \mapsto \mathcal{M}(X)$
■ unit $\eta_{X}: X \rightarrow \mathcal{M}(X)$
■ multiplication $\mu_{X}: \mathcal{M}(\mathcal{M}(X)) \rightarrow \mathcal{M}(X)$

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Metric Space (X, d)

- X a set
- $d: X \times X \rightarrow[0,1]$ a metric on X
- functor $\hat{\mathcal{M}}:(X, d) \mapsto\left(\mathcal{M}(X), \operatorname{lift}_{\mathcal{M}}(d)\right)$
with $\operatorname{lift}_{\mathcal{M}}$: metric on $X \mapsto$ metric on $\mathcal{M}(X)$
- unit and multiplication are non-expansive

THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{P}}:(X, d) \mapsto(\mathcal{P}(X), H(d))$ $H(d)=$ Hausdorff lifting of d

THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{P}}:(X, d) \mapsto(\mathcal{P}(X), H(d))$ $H(d)=$ Hausdorff lifting of d

THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{P}}:(X, d) \mapsto(\mathcal{P}(X), H(d))$ $H(d)=$ Hausdorff lifting of d

THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{P}}:(X, d) \mapsto(\mathcal{P}(X), H(d))$ $H(d)=$ Hausdorff lifting of d

- $\hat{\eta}_{(X, d)}:(X, d) \rightarrow(\mathcal{P}(X), H(d))$ and
$\hat{\mu}_{(X, d)}:(\mathcal{P} \mathcal{P}(X), H(H(d))) \rightarrow(\mathcal{P}(X), H(d))$
non-expansive

THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{D}}:(X, d) \mapsto(\mathcal{D}(X), K(d))$

$$
K(d)=\text { Kantorovich }
$$ lifting of d

THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{D}}:(X, d) \mapsto(\mathcal{D}(X), K(d)) \quad K(d)=$ Kantorovich lifting of d

THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{D}}:(X, d) \mapsto(\mathcal{D}(X), K(d)) \quad K(d)=$ Kantorovich lifting of d

THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{D}}:(X, d) \mapsto(\mathcal{D}(X), K(d))$

$$
\begin{array}{r}
K(d)=\text { Kantorovich } \\
\text { lifting of } d
\end{array}
$$

$$
K(d)\left(\Delta_{1}, \Delta_{2}\right)=\inf _{\omega \in \operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)}\left(\sum_{\left(x_{1}, x_{2}\right) \in X \times X} \omega\left(x_{1}, x_{2}\right) \cdot d\left(x_{1}, x_{2}\right)\right)
$$

with $\operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)$ the set of couplings of Δ_{1} and Δ_{2}, i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_{1} and Δ_{2}

THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{D}}:(X, d) \mapsto(\mathcal{D}(X), K(d)) \quad K(d)=$ Kantorovich lifting of d

- $\hat{\eta}_{(X, d)}:(X, d) \rightarrow(\mathcal{D}(X), K(d))$ and
$\hat{\mu}_{(X, d)}:(\mathcal{D} \mathcal{D}(X), K(K(d))) \rightarrow(\mathcal{D}(X), K(d))$
non-expansive

THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (\mathcal{C}, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{\mathcal{C}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{C}}:(X, d) \mapsto(\mathcal{C}(X), H K(d))$
$H K(d)=$ Hausdorff-Kantorovich lifting of d

THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (\mathcal{C}, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{\mathcal{C}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{C}}:(X, d) \mapsto(\mathcal{C}(X), H K(d))$

$$
\begin{aligned}
H K(d)= & \text { Hausdorff-Kantorovich } \\
& \text { lifting of } d
\end{aligned}
$$

THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (\mathcal{C}, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{\mathcal{C}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{C}}:(X, d) \mapsto(\mathcal{C}(X), H K(d))$
$H K(d)=$ Hausdorff-Kantorovich lifting of d

THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (\mathcal{C}, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{\mathcal{C}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{C}}:(X, d) \mapsto(\mathcal{C}(X), H K(d))$
$H K(d)=$ Hausdorff-Kantorovich lifting of d

THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (\mathcal{C}, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{\mathcal{C}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{C}}:(X, d) \mapsto(\mathcal{C}(X), H K(d))$ $H K(d)=$ Hausdorff-Kantorovich lifting of d

THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (\mathcal{C}, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{\mathcal{C}}, \hat{\eta}, \hat{\mu})$ in Met:

- $\hat{\mathcal{C}}:(X, d) \mapsto(\mathcal{C}(X), H K(d))$

$$
H K(d)=\text { Hausdorff-Kantorovich }
$$ lifting of d

- $\hat{\eta}_{(X, d)}:(X, d) \rightarrow(\mathcal{C}(X), H K(d))$ and
$\hat{\mu}_{(X, d)}:(\mathcal{C C}(X), H K(H K(d))) \rightarrow(\mathcal{C}(X), H K(d))$
non-expansive

FROM EQUIVALENCES TO DISTANCES

Computational effect (monad in Set)

Effect+distance
(monad in Met)

QUANTITATIVE EQUATIONAL THEORIES

Signature $\Sigma=$ set of operations op, each with its arity
■ terms $\quad t:=x \mid o p\left(t_{1}, \ldots t_{n}\right) \quad \forall o p \in \Sigma$
■ quantitative equations $t={ }_{\varepsilon} S$

- Q a set of quantitative inferences $\quad\left\{t_{i}=\varepsilon_{\varepsilon_{i}} s_{i}\right\}_{i \in I} \vdash t={ }_{\varepsilon} S$

Deductive system of quantitative equational logic
(Reflexivity) $\emptyset \vdash t={ }_{o} t$
(Symmetry) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$
(Triangular) $\left\{t=\varepsilon_{\varepsilon_{1}} u, u=\varepsilon_{\varepsilon_{2}} s\right\} \vdash t==_{\varepsilon_{1}+\varepsilon_{2}} s$

QUANTITATIVE EQUATIONAL THEORIES

Signature $\Sigma=$ set of operations op, each with its arity
■ terms $\quad t:=x \mid o p\left(t_{1}, \ldots t_{n}\right) \quad \forall o p \in \Sigma$
■ quantitative equations $t={ }_{\varepsilon} s$
■ Q a set of quantitative inferences $\quad\left\{t_{i}=\varepsilon_{\varepsilon_{i}} s_{i}\right\}_{i \in I} \vdash t={ }_{\varepsilon} S$
Deductive system of quantitative equational logic
(Reflexivity) $\emptyset \vdash t={ }_{o} t$
(Symmetry) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$
(Triangular) $\left\{t={ }_{\varepsilon_{1}} u, u={ }_{\varepsilon_{2}} s\right\} \vdash t=\varepsilon_{\varepsilon_{1}+\varepsilon_{2}} s$
Models: quantitative algebras $\left(A, \Sigma^{A}, d_{A}\right)$ satisfying Q

$$
t={ }_{\varepsilon} s \text { is satisfied if } \forall \iota: X \rightarrow A, d_{A}\left(\llbracket t \rrbracket_{A}^{\iota}, \llbracket s \rrbracket_{A}^{\iota}\right) \leq \varepsilon
$$

Quantitative algebra of terms modulo equations:

$$
\begin{aligned}
& \left(\operatorname{Terms}(X, \Sigma)_{/ Q}, \Sigma, d_{(\Sigma, Q)}\right) \\
& \quad \text { with } d_{(\Sigma, Q)}=\left(t, t^{\prime}\right) \mapsto \inf \left\{\varepsilon \mid \emptyset \vdash t={ }_{\varepsilon} t^{\prime}\right\}
\end{aligned}
$$

[Mardare, Panangaden, Plotkin 2016...]

MONADS ON METRIC SPACES AND QUANTITATIVE EQUATIONAL THEORIES

$\operatorname{Monad}(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu}) \quad \Leftrightarrow$ in Met

Quantitative Equational Theory (Σ, Q)
for Σ a signature, Q quantitative inferences
(Σ, Q) is a presentation of $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$
The category $\mathbf{E M}(\hat{\mathcal{M}})$ of Eilenberg-Moore algebras for $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ is isomorphic to the category $\mathbf{Q A}(\Sigma, Q)$ of quantitative (Σ, Q)-algebras

Corollary: equational reasoning on free objects
Free quantitative algebra for the monad $\cong\left(\operatorname{Terms}(X, \Sigma)_{/ Q}, \Sigma, d_{(\Sigma, Q)}\right)$

THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

$\operatorname{Monad}(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Powerset
(non-empty) monad in Met, with
Hausdorff lifting

Quantitative equational theory of semilattices
■ $\Sigma=\oplus$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

- quantitative inferences $Q=$
- axioms of semilattices, with $t=t^{\prime}$ becoming $\emptyset \vdash t={ }_{o} t^{\prime}$
- $\left\{x_{1}=\epsilon_{\epsilon_{1}} y_{1}, x_{2}=\epsilon_{\epsilon_{2}} y_{2}\right\} \vdash x_{1} \oplus x_{2}={ }_{\max \left(\epsilon_{1}, \epsilon_{2}\right)} y_{1} \oplus y_{2}$

THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Quantitative equational theory of semilattices

- $\Sigma=\oplus$
- quantitative inferences $Q=$
(non-empty) monad in Met, with
Hausdorff lifting
\Leftrightarrow
- axioms of semilattices, with $t=t^{\prime}$ becoming $\emptyset \vdash t={ }_{\circ} t^{\prime}$
$\bullet\left\{x_{1}={ }_{\epsilon_{1}} y_{1}, x_{2}={ }_{\epsilon_{2}} y_{2}\right\} \vdash x_{1} \oplus x_{2}={\max \left(\epsilon_{1}, \epsilon_{2}\right)} y_{1} \oplus y_{2}$

$$
(\mathcal{P}(X), \cup, H(d)) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ Q}, \oplus, d_{(\Sigma, Q)}\right)
$$

the quantitative equational theory of convex algebras

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Distribution monad in Met, with
Kantorovich lifting

Quantitative Equational Theory (Σ, Q)
for Σ a signature, Q quantitative inferences

Quantitative equational theory of convex algebras

- $\Sigma=+_{p}$ for all $p \in(0,1)$
- quantitative inferences $Q=$
- axioms of convex algebras, with $t=t^{\prime}$ becoming $\emptyset \vdash t=\circ t^{\prime}$
- $\left\{x_{1}=\epsilon_{1} y_{1}, x_{2}=\epsilon_{2} y_{2}\right\} \vdash x_{1}+{ }_{p} x_{2}={ }_{p \cdot \epsilon_{1}+(1-p) \cdot \epsilon_{2}} y_{1}+{ }_{p} y_{2}$

the quantitative equational theory of convex algebras

 in Met in Met, with
Kantorovich lifting

Quantitative equational theory of convex algebras

- $\Sigma=+_{p}$ for all $p \in(0,1)$
- quantitative inferences $Q=$

Quantitative Equational Theory (Σ, Q)
for Σ a signature, Q quantitative inferences

-

-axioms of convex aigebras,

- axioms of convex algebras,

$$
\begin{aligned}
& \text { with } t=t^{\prime} \text { becoming } \emptyset \vdash t={ }_{o} t^{\prime} \\
& \bullet\left\{x_{1}=\epsilon_{\epsilon_{1}} y_{1}, x_{2}={ }_{\epsilon_{2}} y_{2}\right\} \vdash x_{1}+_{p} x_{2}={ }_{p \cdot \epsilon_{1}+(1-p) \cdot \epsilon_{2}} y_{1}+{ }_{p} y_{2}
\end{aligned}
$$

$$
\left(\mathcal{D}(X), C S_{p}(-,-), K(d)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ Q},+_{p}, d_{(\Sigma, Q)}\right)
$$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

$\operatorname{Monad}(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Convex sets
(non-empty) of
distributions monad
in Met, with
Hausdorff-
Kantorovich lifting

Quantitative Equational Theory (Σ, Q)
for Σ a signature, Q quantitative inferences

Quantitative equational theory of convex semilattices

■ $\Sigma=\oplus$ and $+_{p}$ for all $p \in(0,1)$

- quantitative inferences $Q=$
- axioms of convex semilattices, with $t=t^{\prime}$ becoming $\emptyset \vdash t={ }_{\circ} t^{\prime}$
- $\left\{x_{1}=\epsilon_{\epsilon_{1}} y_{1}, x_{2}=\epsilon_{\epsilon_{2}} y_{2}\right\} \vdash x_{1} \oplus x_{2}={\max \left(\epsilon_{1}, \epsilon_{2}\right)} y_{1} \oplus y_{2}$
$\bullet\left\{x_{1}=\epsilon_{1} y_{1}, x_{2}=\epsilon_{\epsilon_{2}} y_{2}\right\} \vdash x_{1}+_{p} x_{2}={ }_{p \cdot \epsilon_{1}+(1-p) \cdot \epsilon_{2}} y_{1}+_{p} y_{2}$
[Mio, V. 2020]

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Quantitative Equational Theory (Σ, Q)
for Σ a signature, Q quantitative inferences
Quantitative equational theory of convex semilattices

■ $\Sigma=\oplus$ and $+_{p}$ for all $p \in(0,1)$

- quantitative inferences $Q=$
$\Leftrightarrow \quad \bullet$ axioms of convex semilattices, with $t=t^{\prime}$ becoming $\emptyset \vdash t={ }_{\circ} t^{\prime}$
- $\left\{x_{1}=\epsilon_{\epsilon_{1}} y_{1}, x_{2}=\epsilon_{\epsilon_{2}} y_{2}\right\} \vdash x_{1} \oplus x_{2}={ }_{\max \left(\epsilon_{1}, \epsilon_{2}\right)} y_{1} \oplus y_{2}$
$\bullet\left\{x_{1}=\epsilon_{1} y_{1}, x_{2}=\epsilon_{2} y_{2}\right\} \vdash x_{1}+_{p} x_{2}={ }_{p \cdot \epsilon_{1}+(1-p) \cdot \epsilon_{2}} y_{1}+{ }_{p} y_{2}$
[Mio, V. 2020]
$\left(\mathcal{C}(X),\left\lfloor{ }^{〔}\right.\right.$, WMS $\left._{p}(-,-), H K(d)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ Q}, \oplus,+_{p}, d_{(\Sigma, Q)}\right)$

RECAP: ADDING TERMINATION, IN SETS

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Convex sets (possibly empty) of distributions monad \mathcal{C}^{\emptyset}
\perp-closed convex sets (possibly empty)
of subdistributions monad \mathcal{C}^{\perp}

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of convex semilattices with bottom $\quad x \oplus \star=x$ and black-hole $x+{ }_{p} \star=\star$

Equational theory of convex semilattices with bottom $x \oplus \star=x$

LIFTING TO MET

Convex sets
(possibly empty)
of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices

 with bottom $\quad x \oplus \star=x$ and black-hole $x+{ }_{p} \star=\star$Negative results in Met:
■ The quantitative equational theory of convex semilattices with bottom and black-hole is trivial
■ The multiplication μ of \mathcal{C}^{\emptyset} is not non-expansive \Rightarrow the same monad cannot be lifted to Met

LIFTING TO MET

Convex sets
(possibly empty)
of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom $\quad x \oplus \star=x$ and black-hole $x+{ }_{p} \star=\star$

Negative results in Met:
■ The quantitative equational theory of convex semilattices with bottom and black-hole is trivial
■ The multiplication μ of \mathcal{C}^{\emptyset} is not non-expansive \Rightarrow the same monad cannot be lifted to Met
\perp-closed convex sets
(possibly empty)
of subdistributions monad \mathcal{C}^{\downarrow}

Equational theory of convex semilattices with bottom $x \oplus \star=x$

LIFTING TO MET

Convex sets
(possibly empty)
of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star=x$ and black-hole $x+{ }_{p} \star=\star$

Negative results in Met:
■ The quantitative equational theory of convex semilattices with bottom and black-hole is trivial
■ The multiplication μ of \mathcal{C}^{\emptyset} is not non-expansive \Rightarrow the same monad cannot be lifted to Met
\perp-closed convex sets
(possibly empty)
of subdistributions monad in Met

Quantitative equational theory of convex semilattices with bottom $\quad x \oplus \star=x$

RECAP

\Leftrightarrow Equational theory of convex semilattices

 monad \mathcal{C}Convex sets
(possibly empty) of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star=x$ and black-hole $x+{ }_{p} \star=\star$
\perp-closed convex sets (possibly empty) of subdistributions monad \mathcal{C}^{\downarrow}

APPLICATION: BISIMULATION DISTANCES

A sound and complete proof technique for bisimulation distance

$$
x \sim_{\epsilon} y \quad \text { iff } \quad x==_{\epsilon} y \text { in the quantitative equational theory }
$$

VARYING THE LIFTINGS

VARYING THE LIFTINGS

Different ways of lifting a metric d to probability distributions $\mathcal{D}(X)$
■ Kantorovich lifting on probability distributions

$$
K(d)\left(\Delta_{1}, \Delta_{2}\right)=\inf _{\omega \in \operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)}\left(\sum_{\left(x_{1}, x_{2}\right) \in X \times X} \omega\left(x_{1}, x_{2}\right) \cdot d\left(x_{1}, x_{2}\right)\right)
$$

with $\operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)$ the set of couplings of Δ_{1} and Δ_{2}, i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_{1} and Δ_{2}

■ Łukaszyk-Karmowski lifting on probability distributions

$$
Ł K(d)\left(\Delta_{1}, \Delta_{2}\right)=\sum_{x \in \operatorname{supp}\left(\Delta_{1}\right)} \sum_{y \in \operatorname{supp}\left(\Delta_{2}\right)} \Delta_{1}(x) \cdot \Delta_{2}(y) \cdot d(x, y)
$$

VARYING THE LIFTINGS

Different ways of lifting a metric d to probability distributions $\mathcal{D}(X)$
■ Kantorovich lifting on probability distributions

$$
K(d)\left(\Delta_{1}, \Delta_{2}\right)=\inf _{\omega \in \operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)}\left(\sum_{\left(x_{1}, x_{2}\right) \in X \times X} \omega\left(x_{1}, x_{2}\right) \cdot d\left(x_{1}, x_{2}\right)\right)
$$

with $\operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)$ the set of couplings of Δ_{1} and Δ_{2}, i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_{1} and Δ_{2}

■ Łukaszyk-Karmowski lifting on probability distributions

$$
Ł K(d)\left(\Delta_{1}, \Delta_{2}\right)=\sum_{x \in \operatorname{supp}\left(\Delta_{1}\right)} \sum_{y \in \operatorname{supp}\left(\Delta_{2}\right)} \Delta_{1}(x) \cdot \Delta_{2}(y) \cdot d(x, y)
$$

A metric? Presented by a quantitative equational theory?

ISSUES WITH THE ŁK DISTANCE: METRIC CONSTRAINTS

$(X, d: X \times X \rightarrow[0,1])$ is a metric space iff
$1 d(x, x)=0$
$2 d(x, y)=d(y, x)$
$3 d(x, z) \leq d(x, y)+d(y, z)$
$4 d(x, y)=0 \Rightarrow x=y$
For (X, d) a metric space, $(\mathcal{D}(X), Ł K(d))$ is not a metric space

$$
\exists \Delta \text { such that } Ł K(d)(\Delta, \Delta)>0
$$

ISSUES WITH THE $Ł K$ DISTANCE: METRIC CONSTRAINTS

$(X, d: X \times X \rightarrow[0,1])$ is a metric space iff
$1 d(x, x)=0$
$2 d(x, y)=d(y, x)$
$3 d(x, z) \leq d(x, y)+d(y, z)$
$4 d(x, y)=0 \Rightarrow x=y$
For (X, d) a metric space, $(\mathcal{D}(X), Ł K(d))$ is not a metric space

$$
\exists \Delta \text { such that } Ł K(d)(\Delta, \Delta)>0
$$

Solution: generalised metric spaces

GENERALISED METRIC SPACES

(X, d) with d a function $d: X \times X \rightarrow[0,1]$ (aka "fuzzy relation") d may satisfy a subset of:
$1 d(x, x)=0$
$2 d(x, y)=d(y, x)$
$3 d(x, z) \leq d(x, y)+d(y, z)$
$4 d(x, y)=0 \Rightarrow x=y$
$5 d(x, z) \leq \max \{d(x, y), d(y, z)\}$

Examples:

■ Metric spaces := $1+2+3+4$
■ Ultrametric spaces : $=1+2+3+4+5$

- Pseudo-metric spaces :=1+2+3
- Diffuse metric spaces :=2+3

ISSUES WITH THE ŁK DISTANCE: NONEXPANSIVENESS

In the deductive system of quantitative equational theories: operations are required to be nonexpansive wrt the product metric

$$
s_{1}=\varepsilon_{1} t_{1}, \ldots, s_{n}=\varepsilon_{n} t_{n} \vdash \operatorname{op}\left(s_{1}, \ldots, s_{n}\right)=_{\max \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}} \operatorname{op}\left(t_{1}, \ldots, t_{n}\right)
$$

i.e., in all quantitative algebras $\left(A, \Sigma^{A}, d_{A}\right)$, operations define a nonexpansive map op ${ }^{A}:\left(A^{n}, \mathbf{L}_{\times}(d)\right) \rightarrow(A, d)$, where

$$
\mathbf{L}_{\times}(d)\left(\left(a_{1}, \ldots, a_{n}\right),\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right)=\max _{i}\left\{d\left(a_{i}, a_{i}^{\prime}\right)\right\}
$$

In $(\mathcal{D}(X), Ł K(d))$, the operation $+_{p}$ is not nonexpansive wrt to the product metric, i.e., $\exists \Delta_{1}, \Delta_{2}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime}$ such that

$$
Ł K(d)\left(\Delta_{1}+\frac{1}{2} \Delta_{2}, \Delta_{1}^{\prime}+\frac{1}{2} \Delta_{2}^{\prime}\right)>\mathbf{L}_{\times}(\nsucceq K(d))\left(\left(\Delta_{1}, \Delta_{1}^{\prime}\right),\left(\Delta_{2}, \Delta_{2}^{\prime}\right)\right)
$$

ISSUES WITH THE ŁK DISTANCE: NONEXPANSIVENESS

In the deductive system of quantitative equational theories: operations are required to be nonexpansive wrt the product metric

$$
s_{1}=\varepsilon_{1} t_{1}, \ldots, s_{n}=\varepsilon_{n} t_{n} \vdash \operatorname{op}\left(s_{1}, \ldots, s_{n}\right)=_{\max \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}} \operatorname{op}\left(t_{1}, \ldots, t_{n}\right)
$$

i.e., in all quantitative algebras $\left(A, \Sigma^{A}, d_{A}\right)$, operations define a nonexpansive map op ${ }^{A}:\left(A^{n}, \mathbf{L}_{\times}(d)\right) \rightarrow(A, d)$, where

$$
\mathbf{L}_{\times}(d)\left(\left(a_{1}, \ldots, a_{n}\right),\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right)=\max _{i}\left\{d\left(a_{i}, a_{i}^{\prime}\right)\right\}
$$

In $(\mathcal{D}(X), Ł K(d))$, the operation $+_{p}$ is not nonexpansive wrt to the product metric, i.e., $\exists \Delta_{1}, \Delta_{2}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime}$ such that

$$
Ł K(d)\left(\Delta_{1}+\frac{1}{2} \Delta_{2}, \Delta_{1}^{\prime}+\frac{1}{2} \Delta_{2}^{\prime}\right)>\mathbf{L}_{\times}(\nsucceq K(d))\left(\left(\Delta_{1}, \Delta_{1}^{\prime}\right),\left(\Delta_{2}, \Delta_{2}^{\prime}\right)\right)
$$

Solution: remove the nonexpansiveness requirement

A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

Extend the framework of quantitative equational theories to include:

- generalised metric spaces
- operations which are not nonexpansive

How?

■ separate equality from quantitative equality: equations and quantitative equations coexist, with relationship determined by axioms

$$
x=y \quad \text { different from } \quad x=0 y
$$

■ remove rule of nonexpansiveness, and allow for arbitrary operations
\Rightarrow a new framework for quantitative equational reasoning, with a sound and complete deductive apparatus

A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

effect+distance
(monad in GMet)
monads in Met seen so far
\Leftrightarrow (generalised) quantitative equational theory
(generalised) quantitative equational theories corresponding to those seen so far
(generalised) quantitative equational theory

- $\Sigma=+{ }_{p}$ for all $p \in(0,1)$
distribution monad
$\hat{\mathcal{D}}$ in DMet, with Łukaszyk-Karmowski lifting
- equations and quantitative inferences:
- axioms of convex algebras,
- quantitative axiom
$\left\{\begin{array}{l}x_{1}=\varepsilon_{11} x_{1}, x_{2}=\varepsilon_{21} x_{1} \\ x_{1}=\varepsilon_{12} y_{2}, y_{2}=\varepsilon_{22} y_{2}\end{array}\right\} \vdash x_{1}+{ }_{p} x_{2}=\delta y_{1}+{ }_{p} y_{2}$
with $\delta=p^{2} \varepsilon_{11}+(1-p) p \varepsilon_{21}+p(1-p) \varepsilon_{12}+(1-p)^{2} \varepsilon_{22}$
- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Equivalence relation R on X such that x R implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as:

$$
\Delta_{1} \hat{R} \Delta_{2} \text { iff } \forall A \in X_{/ R}, \Delta_{1}(A)=\Delta_{2}(A)
$$

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Equivalence relation R on X such that x R implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as:

$$
\begin{gathered}
\Delta_{1} \hat{R} \Delta_{2} \text { iff } \forall A \in X_{/ R}, \Delta_{1}(A)=\Delta_{2}(A) \\
\left(\mathcal{D}(X), \operatorname{CS}_{p}(-,-)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E},+_{p}\right)
\end{gathered}
$$

BISIMULATION EQUIVALENCE (PROBABILISTIC)

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Equivalence relation R on X such that x R ymplies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as:

$$
\begin{aligned}
& \qquad \Delta_{1} \hat{R} \Delta_{2} \text { iff } \forall A \in X_{/ R}, \Delta_{1}(A)=\Delta_{2}(A) \\
& \left(\mathcal{D}(X), C S_{p}(-,-)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E},++_{p}\right) \\
& \Delta_{1}=\Delta_{2} \text { iff } \emptyset \vdash t_{\Delta_{1}}=t_{\Delta_{2}} \\
& \text { where } \vdash \text { is derivability in the theory of } \\
& \text { convex algebras }
\end{aligned}
$$

BISIMULATION EQUIVALENCE (PROBABILISTIC)

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as:

$$
\Delta_{1} \hat{R} \Delta_{2} \text { iff } \forall A \in X_{/ R}, \Delta_{1}(A)=\Delta_{2}(A)
$$

$$
\left(\mathcal{D}(X), \operatorname{CS}_{p}(-,-)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ E},+_{p}\right)
$$

$$
\Delta_{1}=\Delta_{2} \text { iff } \emptyset \vdash t_{\Delta_{1}}=t_{\Delta_{2}}
$$

where \vdash is derivability in the theory of convex algebras
$\Delta_{1} \hat{R} \Delta_{2}$ iff $\emptyset \vdash_{R} t_{\Delta_{1}}=t_{\Delta_{2}}$ where \vdash_{R} is derivability in the theory of convex algebras+equations induced by R

BISIMULATION EQUIVALENCE (NONDETERMINISM+TERMINATION)

- Effect: nondeterminism+termination $\quad \tau: X \rightarrow \mathcal{P}^{\emptyset}(X)$

■ Equivalence relation R on X such that $x R$ y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{P}^{\emptyset}(X)$ defined as:
$S_{1} \hat{R} S_{2}$ iff $\forall x^{\prime} \in S_{1} \exists y^{\prime} \in S_{2}$ s.t. $x^{\prime} R y^{\prime}$ and $\forall y^{\prime} \in S_{2} \exists x^{\prime} \in S_{1}$ s.t. $x^{\prime} R y^{\prime}$

$$
S_{1} \hat{R} S_{2} \text { iff } \emptyset \vdash_{R} t_{S_{1}}=t_{S_{2}}
$$

where \vdash_{R} is derivability in the theory of semilattices with bottom+equations induced by R

BISIMULATION EQUIVALENCE (NONDETERMINISM+TERMINATION)

- Effect: nondeterminism+termination $\quad \tau: X \rightarrow \mathcal{P}^{\emptyset}(X)$

■ Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{P}^{\emptyset}(X)$ defined as:
$S_{1} \hat{R} S_{2}$ iff $\forall x^{\prime} \in S_{1} \exists y^{\prime} \in S_{2}$ s.t. $x^{\prime} R y^{\prime}$ and $\forall y^{\prime} \in S_{2} \exists x^{\prime} \in S_{1}$ s.t. $x^{\prime} R y^{\prime}$

$$
S_{1} \hat{R} S_{2} \text { iff } \emptyset \vdash_{R} t_{S_{1}}=t_{S_{2}}
$$

where \vdash_{R} is derivability in the theory of semilattices with bottom+equations induced by R
More generally:

- bisimulation: we lift a relation R on X to a relation \hat{R} on the chosen effect over X
- by the correspondence effect/equational theory, we can reason equationally on \hat{R}

FROM EQUIVALENCES TO METRICS

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$

■ Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as:

$$
\Delta_{1} \hat{R} \Delta_{2} \text { iff } \forall A \in X_{/ R}, \Delta_{1}(A)=\Delta_{2}(A)
$$

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Metric d on X such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$ with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting $K(d)$

$$
K(d)\left(\Delta_{1}, \Delta_{2}\right)=\inf _{\omega \in \operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)}\left(\sum_{\left(x_{1}, x_{2}\right) \in X \times X} \omega\left(x_{1}, x_{2}\right) \cdot d\left(x_{1}, x_{2}\right)\right)
$$

with $\operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)$ the set of couplings of Δ_{1} and Δ_{2}, i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_{1} and Δ_{2}

FROM EQUIVALENCES TO METRICS

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$

■ Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as:

$$
\Delta_{1} \hat{R} \Delta_{2} \text { iff } \forall A \in X_{/ R}, \Delta_{1}(A)=\Delta_{2}(A)
$$

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Metric d on X such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$ with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting $K(d)$

$$
K(d)\left(\Delta_{1}, \Delta_{2}\right)=\inf _{\omega \in \operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)}\left(\sum_{\left(x_{1}, x_{2}\right) \in X \times X} \omega\left(x_{1}, x_{2}\right) \cdot d\left(x_{1}, x_{2}\right)\right)
$$

with $\operatorname{Coup}\left(\Delta_{1}, \Delta_{2}\right)$ the set of couplings of Δ_{1} and Δ_{2}, i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_{1} and Δ_{2}

EQUATIONAL REASONING FOR BISIMULATION METRICS

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Metric d on X such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$ with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting $K(d)$

EQUATIONAL REASONING FOR BISIMULATION METRICS

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Metric d on X such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$ with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting $K(d)$

$$
\left(\mathcal{D}(X), \operatorname{CS}_{p}(-,-), K(d)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ Q},+_{p}, d_{(\Sigma, Q)}\right)
$$

EQUATIONAL REASONING FOR BISIMULATION METRICS

- Effect: probabilities $\quad \tau: X \rightarrow \mathcal{D}(X)$
- Metric d on X such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$ with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting $K(d)$

$$
\left(\mathcal{D}(X), \operatorname{CS}_{p}(-,-), K(d)\right) \cong\left(\operatorname{Terms}(X, \Sigma)_{/ Q},+_{p}, d_{(\Sigma, Q)}\right)
$$

$$
K(d)\left(\Delta_{1}, \Delta_{2}\right) \leq \varepsilon \text { iff } \emptyset \vdash_{d} t_{\Delta_{1}}={ }_{\varepsilon} t_{\Delta_{2}}
$$

where \vdash_{d} is derivability in the quantitative equational theory of convex algebras+quantitative equations induced by d

