EQUATIONAL THEORIES AND DISTANCES FOR COMPUTATIONAL EFFECTS

Valeria Vignudelli

CNRS, ENS Lyon

Computational effect (monad in Set)

 \Leftrightarrow

Equational Theory (Σ, E)

for $\boldsymbol{\Sigma}$ a signature, \boldsymbol{E} a set of equations

Computational effect (monad in Set) Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Effects: nondeterminism, probabilities, termination, combinations

 \Leftrightarrow

Computational effect (monad in Set) Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Effects: nondeterminism, probabilities, termination, combinations

 \Leftrightarrow

Computational effect (monad in Set) Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Effects: nondeterminism, probabilities, termination, combinations

Computational effect Equational Theory (Σ, E) (monad in Set) for Σ a signature, *E* a set of equations Effects: nondeterminism, probabilities, termination, combinations х X₁ **Х**1 X₂ X₂ **X**3 X₂ X3

- reasoning equationally on equivalences of systems
- what about reasoning equationally on distances?

Monads and Equational Theories for Computational Effects

Monad (\mathcal{M},η,μ) in Set

- functor $\mathcal{M} : X \mapsto \mathcal{M}(X)$
- unit $\eta_X : X \to \mathcal{M}(X)$
- multiplication $\mu_X : \mathcal{MM}(X) \to \mathcal{M}(X)$

Monad (\mathcal{M}, η, μ) in Set Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

• terms $t := x | op(t_1, ...t_n)$ for $op \in \Sigma$

• *E* a set of equations t = s

Deductive system: equational logic (Reflexivity) $\emptyset \vdash t = t$ (Symmetry) $\{t = s\} \vdash s = t$ (Transitivity) $\{t = u, u = s\} \vdash t = s$

Models: algebras (A, Σ^A) satisfying E

Free model: $(Terms(X, \Sigma)_{/E}, \Sigma)$

$$\begin{array}{c} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) \\ \text{in Set} \end{array} \iff \begin{array}{c} \text{Equational Theory} \left(\Sigma, E\right) \\ \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

 (Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category **EM**(\mathcal{M}) of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category **A**(Σ, E) of algebras (models) of (Σ, E)

Category $\mathbf{EM}(\mathcal{M})$

- objects: $(A, \alpha : \mathcal{M}(A) \to A)$ with α commuting with η, μ
- arrows: algebra morphisms

Category $\mathbf{A}(\Sigma, E)$

- objects: models (A, Σ^A) of (Σ, E)
- arrows: homomorphisms of
 (Σ, E)-algebras

$$\begin{array}{c} \text{Monad} (\mathcal{M}, \eta, \mu) \\ \text{in Set} \end{array} \iff \begin{array}{c} \text{Equational Theory} (\Sigma, E) \\ \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

 (Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category **EM**(\mathcal{M}) of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category **A**(Σ, E) of algebras (models) of (Σ, E)

Corollary: equational reasoning on free objects

Free algebra for the monad \cong (*Terms*(X, Σ)_{/E}, Σ)

EXAMPLE: NONDETERMINISM

$$\begin{array}{c} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) \\ \text{in Set} \end{array} \iff \begin{array}{c} \text{Equational Theory} \left(\Sigma, E\right) \\ \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

$$\tau: X \to \mathcal{P}(X)$$
$$\tau(x) = \{x_1, x_2\}$$
$$\tau(x_1) = \{x_1\}$$

•••

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Set

 \Leftrightarrow

Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Powerset (non-empty) monad (\mathcal{P}, η, μ)

- $\mathcal{P} : X \mapsto \{S \mid S \text{ is a non-} empty, finite subset of } X\}$
- $\blacksquare \eta : \mathbf{x} \mapsto \{\mathbf{x}\}$

$$\blacksquare \ \mu : \{\mathsf{S}_1, ..., \mathsf{S}_n\} \mapsto \bigcup_i \mathsf{S}_i$$

Equational theory of semilattices

• Σ = binary operation \oplus

axioms of E =

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$
$$x \oplus y \stackrel{(C)}{=} y \oplus x$$
$$x \oplus x \stackrel{(I)}{=} x$$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M},η,μ) in Set

 \Leftrightarrow

Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Powerset (non-empty) monad (\mathcal{P}, η, μ)

- $\mathcal{P} : X \mapsto \{S \mid S \text{ is a non-} empty, finite subset of } K \}$
- $\blacksquare \eta : \mathbf{x} \mapsto \{\mathbf{x}\}$

$$\blacksquare \mu : \{\mathsf{S}_1, ..., \mathsf{S}_n\} \mapsto \bigcup_i \mathsf{S}_i$$

Equational theory of semilattices

• Σ = binary operation \oplus

axioms of E =

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$
$$x \oplus y \stackrel{(C)}{=} y \oplus x$$
$$x \oplus x \stackrel{(I)}{=} x$$

 $(\mathcal{P}(X), \bigcup) \cong (Terms(X, \Sigma)_{/E}, \oplus)$

EXAMPLE: NONDETERMINISM + TERMINATION

$$\begin{array}{ccc} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) \\ \text{in Set} \end{array} \iff \begin{array}{c} \text{Equational Theory} \left(\Sigma, E\right) \\ \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

$$\tau: X \to \mathcal{P}^{\emptyset}(X)$$
$$\tau(x) = \{x_1, x_2\}$$
$$\tau(x_1) = \emptyset$$

•••

EXAMPLE: NONDETERMINISM + TERMINATION

Monad (\mathcal{M},η,μ) in Set	\Rightarrow	Equational Theory (Σ, E) for Σ a signature, <i>E</i> a set of equations
		Equational theory of semilattices with bottom
Powerset (possibly empty) monad $(\mathcal{P}^{\emptyset}, \eta, \mu)$ $\mathcal{P}^{\emptyset} : X \mapsto \{S \mid S \text{ is a finite subset of } X\}$ $\eta : x \mapsto \{x\}$ $\mu : \{S_1,, S_n\} \mapsto \bigcup_i S_i$	\rightarrow	• $\Sigma = \star, \oplus$ • axioms of $E =$ • axioms of semilattices $(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$ $x \oplus y \stackrel{(C)}{=} y \oplus x$ $x \oplus x \stackrel{(I)}{=} x$
		• bottom axiom $x \oplus \star = x$

 $(\mathcal{P}^{\emptyset}(X), \bigcup, \emptyset) \cong (Terms(X, \Sigma)_{/E}, \oplus, \star)$

EXAMPLE: PROBABILITY

$$\begin{array}{ccc} \text{Monad} (\mathcal{M}, \eta, \mu) \\ \text{in Set} \end{array} \iff \begin{array}{c} \text{Equational Theory} (\Sigma, E) \\ \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

$$\tau: X \to \mathcal{D}(X)$$
$$\tau(x) = \frac{1}{2}x_1 + \frac{1}{2}x_2$$
$$\tau(x_1) = 1x_1$$

•••

EXAMPLE: PROBABILITY

Monad (\mathcal{M},η,μ) in Set

$$\Leftrightarrow$$

Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Distribution monad
$$(\mathcal{D}, \eta, \mu)$$

• $\mathcal{D} : \mathbf{X} \mapsto \{\Delta \mid \Delta \text{ is a }$

finitely supported
probability distribution
on X}

 $\blacksquare \ \eta : \mathbf{X} \mapsto \mathbf{1}\mathbf{X}$

• $\mu: \sum_{i} p_i \Delta_i \mapsto \sum_{i} p_i \cdot \Delta_i$

Equational theory of convex algebras $\Sigma = \text{binary operations} +_p \text{ for all}$ $p \in (0, 1)$ $\Rightarrow \text{ axioms of } E =$ $(x +_q y) +_p z \xrightarrow{(A_p)} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$ $x +_p y \xrightarrow{(C_p)} y +_{1-p} x$ $x +_p x \xrightarrow{(I_p)} x$

 $(\mathcal{D}(X), \mathsf{CS}_p(_,_)) \cong (\mathsf{Terms}(X, \Sigma)_{/E}, +_p)$

EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

$$\begin{array}{c} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) \\ \text{in Set} \end{array} \iff \begin{array}{c} \text{Equational Theory} \left(\Sigma, E\right) \\ \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

subdistribution = $\sum_i p_i x_i$ with $\sum_i p_i \leq 1$

EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

 \Leftrightarrow

 $\begin{array}{ccc} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) & \longleftrightarrow & \text{Equational Theory} \left(\Sigma, E\right) \\ \text{in Set} & & \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$

Subdistribution monad $(\mathcal{D}^{\leq}, \eta, \mu)$ $\mathcal{D}^{\leq} : X \mapsto \{\Delta \mid \Delta \text{ is a }$ finitely supported probability subdistribution on X} Equational theory of pointed convex algebras

•
$$\Sigma = \star$$
 and $+_p$ for all $p \in (0, 1)$

axioms of E =

$$(x +_q y) +_p z \stackrel{(A_p)}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

 $x +_p y \stackrel{(C_p)}{=} y +_{1-p} x$
 $x +_p x \stackrel{(I_p)}{=} x$

COMBINING NONDETERMINISM AND PROBABILITY

a transition reaches a set of probability distributions
 { 1/2 x₁ + 1/2 x₂, 1/3 x₃ + 2/3 x₄ }
 Problem: P ∘ D is not a

monad [Varacca, Winskel 2006]

COMBINING NONDETERMINISM AND PROBABILITY

a transition reaches a set of probability distributions
 { 1/2}x₁ + 1/2 x₂, 1/3 x₃ + 2/3 x₄ }
 Problem: P ∘ D is not a
 monad [Varacca, Winskel 2006]

Solution: use **convex sets of probability distributions** $\{\frac{1}{2}x_1 + \frac{1}{2}x_2, \dots, \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{6}x_3 + \frac{1}{3}x_4, \dots, \frac{1}{3}x_3 + \frac{2}{3}x_4\}$

COMBINING NONDETERMINISM AND PROBABILITY

a transition reaches a set of probability distributions
 { 1/2}x₁ + 1/2x₂, 1/3x₃ + 2/3x₄ }
 Problem: P ∘ D is not a
 monad [Varacca, Winskel 2006]

Solution: use **convex sets of probability distributions** $\{\frac{1}{2}x_1 + \frac{1}{2}x_2, \dots, \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{6}x_3 + \frac{1}{3}x_4, \dots, \frac{1}{3}x_3 + \frac{2}{3}x_4\}$

+ accounts for probabilistic schedulers

The monad (\mathcal{C}, η, μ) in Set:

■ C : X → {S | S is a non-empty, convex-closed, finitely generated set of finitely supported probability distributions over X}

$$\eta_X : X \to \mathcal{C}(X)$$
$$\eta_X : x \mapsto \{ \ \mathbf{1}x \}$$
$$\mu_X : \mathcal{CC}(X) \to \mathcal{C}(X)$$

$$\mu_{\mathsf{X}}:\bigcup_{i}\{\Delta_{i}\}\mapsto\bigcup_{i}\mathsf{WMS}(\Delta_{i})$$

with WMS : $\mathcal{DC}(X) \rightarrow \mathcal{C}(X)$ the weighted Minkowski sum

$$WMS(\sum_{i=1}^{n} p_i S_i) = \{\sum_{i=1}^{n} p_i \cdot \Delta_i \mid \text{for each } 1 \leq i \leq n, \Delta_i \in S_i\}$$

[Jacobs 2008 ...]

Monad (\mathcal{M}, η, μ) in Set

 \Leftrightarrow

Convex sets (non-empty) of distributions monad $C(X) = \{S \mid S \text{ is a}$ non-empty, convex-closed, finitely generated set of finitely supported probability distributions over $X\}$ Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Equational theory of convex semilattices

• $\Sigma = \oplus$ and $+_p$ for all $p \in (0, 1)$

axioms E :

- axioms of semilattices
- axioms of convex algebras

distributivity axiom (D)

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

[Bonchi, Sokolova, V. 2019 and 2021]

Monad (\mathcal{M}, η, μ) in Set

 \Leftrightarrow

Convex sets (non-empty) of distributions monad $C(X) = \{S \mid S \text{ is a}$ non-empty, convex-closed, finitely generated set of finitely supported probability distributions over X} Equational Theory (Σ, E) for Σ a signature, *E* a set of equations

Equational theory of convex semilattices

• $\Sigma = \oplus$ and $+_p$ for all $p \in (0, 1)$

axioms E :

- axioms of semilattices
- axioms of convex algebras

■ distributivity axiom (D)

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

[Bonchi, Sokolova, V. 2019 and 2021]

 $(\mathcal{C}(X), \textcircled{co}, WMS_p(_, _)) \cong (Terms(X, \Sigma)_{/E}, \oplus, +_p)$

 $\begin{array}{ccc} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) & \longleftrightarrow & \text{Equational Theory} \left(\Sigma, E\right) \\ \text{in Set} & \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$

 \Leftrightarrow

Convex sets (possibly empty) of distributions monad \mathcal{C}^{\emptyset} Equational theory of convex semilattices with bottom and black-hole

$$\Sigma$$
 = \star , \oplus , $+_p$ for all $p \in (0, 1)$

axioms of E =

- axioms of convex semilattices
- bottom axiom $x \oplus \star = x$
- black-hole axiom $x +_p \star = \star$

NONDETERMINISM + PROBABILITY + TERMINATION, BOTTOM ONLY

 $\begin{array}{ccc} \text{Monad} \left(\mathcal{M}, \eta, \mu\right) & \longleftrightarrow & \text{Equational Theory} \left(\Sigma, E\right) \\ \text{in Set} & \text{for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$

 \perp -closed convex sets (possibly empty) of subdistributions monad \mathcal{C}^{\downarrow}

[Mio, Sarkis, V. 2021]

subdistribution = \$\sum_i p_i x_i\$ with \$\sum_i p_i \le 1\$
S is \$\prod_-\$closed = if \$\sum_i p_i x_i \in S\$ then \$\sum_i q_i x_i \in S\$ with \$q_i \le p_i\$

For transition systems with nondeterminism, probabilities, termination, combinations...

 axiomatizations and equational reasoning for bisimulation equivalence

 $x \sim y$ iff x = y in the equational theory

proof techniques for trace equivalence (via powerset construction)

[Bonchi, Pous 2013], [Bonchi, Sokolova, V. 2019]...

WHAT ABOUT DISTANCES?

MONADS ON METRIC SPACES AND QUANTITATIVE EQUATIONAL THEORIES

FROM EQUIVALENCES TO DISTANCES

Monad (\mathcal{M}, η, μ) in Set

- functor $\mathcal{M} : X \mapsto \mathcal{M}(X)$
- unit $\eta_X : X \to \mathcal{M}(X)$
- multiplication $\mu_X : \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X)$

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Metric Space (X, d) $\blacksquare X$ a set $\blacksquare d : X \times X \rightarrow [0, 1]$ a metric on X

- functor $\hat{\mathcal{M}}$: $(X, d) \mapsto (\mathcal{M}(X), \operatorname{lift}_{\mathcal{M}}(d))$ with $\operatorname{lift}_{\mathcal{M}}$: metric on $X \mapsto$ metric on $\mathcal{M}(X)$
- unit and multiplication are non-expansive

The powerset monad (\mathcal{P},η,μ) can be lifted to a monad $(\hat{\mathcal{P}},\hat{\eta},\hat{\mu})$ in Met:

 $\bullet \hat{\mathcal{P}}: (X,d) \mapsto (\mathcal{P}(X), H(d))$

H(d) = Hausdorff lifting of d
THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P},η,μ) can be lifted to a monad $(\hat{\mathcal{P}},\hat{\eta},\hat{\mu})$ in Met:

• $\hat{\mathcal{P}}: (X, d) \mapsto (\mathcal{P}(X), H(d))$ H(d) = Hausdorff lifting of d

THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

• $\hat{\mathcal{P}}: (X, d) \mapsto (\mathcal{P}(X), H(d))$ H(d) = Hausdorff lifting of d

THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (\mathcal{P},η,μ) can be lifted to a monad $(\hat{\mathcal{P}},\hat{\eta},\hat{\mu})$ in Met:

• $\hat{\mathcal{P}}: (X, d) \mapsto (\mathcal{P}(X), H(d))$ H(d) = Hausdorff lifting of d

• $\hat{\eta}_{(X,d)}$: $(X,d) \to (\mathcal{P}(X), H(d))$ and $\hat{\mu}_{(X,d)}$: $(\mathcal{PP}(X), H(H(d))) \to (\mathcal{P}(X), H(d))$ non-expansive The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

 $\bullet \hat{\mathcal{D}}: (X,d) \mapsto (\mathcal{D}(X), K(d))$

K(d) = Kantorovichlifting of d

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

• $\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$ K(d) = Kantorovichlifting of d

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

• $\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$ K(d) = Kantorovichlifting of d

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

 $\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d)) \qquad \qquad K(d) = \text{Kantorovich} \\ \text{lifting of } d$

$$K(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \Big(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \Big)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

 $\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), \mathcal{K}(d)) \qquad \qquad \mathcal{K}(d) = \text{Kantorovich} \\ \text{lifting of } d$

•
$$\hat{\eta}_{(X,d)}$$
 : $(X,d) \to (\mathcal{D}(X), \mathcal{K}(d))$ and
 $\hat{\mu}_{(X,d)}$: $(\mathcal{D}\mathcal{D}(X), \mathcal{K}(\mathcal{K}(d))) \to (\mathcal{D}(X), \mathcal{K}(d))$
non-expansive

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\bullet \ \hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\bullet \hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\bullet \hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\bullet \hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\hat{\mathcal{C}}: (X, d) \mapsto (\mathcal{C}(X), HK(d)) \\ HK(d) \\ HK(d) \\ HK(d) \\ lifting of d$

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

• $\hat{C}: (X, d) \mapsto (C(X), HK(d))$ HK(d) HK(d) = Hausdorff-Kantorovichlifting of d

> K(d) $\frac{1}{2}X_1$ d $X_3\frac{1}{3}$ + $\frac{1}{2}X_2$ $X_4\frac{2}{3}$

• $\hat{\eta}_{(X,d)}$: $(X,d) \rightarrow (\mathcal{C}(X), HK(d))$ and $\hat{\mu}_{(X,d)}$: $(\mathcal{CC}(X), HK(HK(d))) \rightarrow (\mathcal{C}(X), HK(d))$ non-expansive

FROM EQUIVALENCES TO DISTANCES

Signature $\Sigma =$ set of operations *op*, each with its arity

- terms $t := x | op(t_1, ...t_n) \quad \forall op \in \Sigma$
- quantitative equations $t =_{\varepsilon} s$
- **Q** a set of quantitative inferences $\{t_i =_{\varepsilon_i} s_i\}_{i \in I} \vdash t =_{\varepsilon} s_i$

Deductive system of quantitative equational logic

 $\begin{array}{ll} (\text{Reflexivity}) & \emptyset \vdash t =_{o} t \\ (\text{Symmetry}) & \{t =_{\varepsilon} s\} \vdash s =_{\varepsilon} t \\ (\text{Triangular}) & \{t =_{\varepsilon_{1}} u, u =_{\varepsilon_{2}} s\} \vdash t =_{\varepsilon_{1} + \varepsilon_{2}} s \end{array}$

Signature $\Sigma =$ set of operations *op*, each with its arity

- terms $t := x | op(t_1, ...t_n) \quad \forall op \in \Sigma$
- quantitative equations $t =_{\varepsilon} s$
- **Q** a set of quantitative inferences $\{t_i =_{\varepsilon_i} s_i\}_{i \in I} \vdash t =_{\varepsilon} s_i$

Deductive system of quantitative equational logic

$$\begin{array}{ll} (\text{Reflexivity}) & \emptyset \vdash t =_{o} t \\ (\text{Symmetry}) & \{t =_{\varepsilon} s\} \vdash s =_{\varepsilon} t \\ (\text{Triangular}) & \{t =_{\varepsilon_{1}} u, u =_{\varepsilon_{2}} s\} \vdash t =_{\varepsilon_{1} + \varepsilon_{2}} s \end{array}$$

Models: quantitative algebras (A, Σ^A, d_A) satisfying Q

 $t =_{\varepsilon} s$ is satisfied if $\forall \iota : X \to A, \ d_A(\llbracket t \rrbracket_A^{\iota}, \llbracket s \rrbracket_A^{\iota}) \leq \varepsilon$

Quantitative algebra of terms modulo equations:

$$(Terms(X, \Sigma)_{/Q}, \Sigma, d_{(\Sigma,Q)})$$

with $d_{(\Sigma,Q)} = (t, t') \mapsto \inf \{ \varepsilon \mid \emptyset \vdash t =_{\varepsilon} t' \}$

[Mardare, Panangaden, Plotkin 2016...]

MONADS ON METRIC SPACES AND QUANTITATIVE EQUATIONAL THEORIES

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

 (Σ, Q) is a presentation of $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$

The category **EM**($\hat{\mathcal{M}}$) of Eilenberg-Moore algebras for $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ is isomorphic to the category **QA**(Σ, Q) of quantitative (Σ, Q)-algebras

Corollary: equational reasoning on free objects

Free quantitative algebra for the monad \cong (*Terms*(X, Σ)_{/Q}, $\Sigma, d_{(\Sigma,Q)}$)

THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Powerset (non-empty) monad in Met, with Hausdorff lifting Quantitative equational theory of semilattices

- Σ = ⊕
- quantitative inferences Q =
- axioms of semilattices,

with t = t' becoming $\emptyset \vdash t =_{o} t'$

 $\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 \oplus x_2 =_{\max(\epsilon_1, \epsilon_2)} y_1 \oplus y_2$

THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Powerset (non-empty) monad in Met, with Hausdorff lifting Quantitative equational theory of semilattices

- Σ = ⊕
- quantitative inferences Q =
- axioms of semilattices,

with t = t' becoming $\emptyset \vdash t =_{o} t'$

 $\bullet \big\{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \big\} \vdash x_1 \oplus x_2 =_{\max(\epsilon_1, \epsilon_2)} y_1 \oplus y_2$

 $(\mathcal{P}(X), \bigcup, H(d)) \cong (Terms(X, \Sigma)_{/Q}, \oplus, d_{(\Sigma,Q)})$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX ALGEBRAS

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Distribution monad in Met, with ↔ Kantorovich lifting Quantitative equational theory of convex algebras

- $\Sigma = +_p$ for all $p \in (0, 1)$
- quantitative inferences Q =
- axioms of convex algebras, with t = t' becoming $\emptyset \vdash t =_{\circ} t'$
- $\{x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2\} \vdash x_1 +_p x_2 =_{p \cdot \epsilon_1 + (1-p) \cdot \epsilon_2} y_1 +_p y_2$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX ALGEBRAS

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Distribution monad in Met, with Kantorovich lifting

 \Leftrightarrow

Quantitative equational theory of convex algebras

- $\Sigma = +_p$ for all $p \in (0, 1)$
- quantitative inferences Q =
- axioms of convex algebras, with t = t' becoming $\emptyset \vdash t =_{\circ} t'$
- $\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 +_p x_2 =_{p \cdot \epsilon_1 + (1-p) \cdot \epsilon_2} y_1 +_p y_2$

 $(\mathcal{D}(X), \mathsf{CS}_p(_,_), \mathsf{K}(d)) \cong (\operatorname{Terms}(X, \Sigma)_{/Q}, +_p, d_{(\Sigma,Q)})$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Convex sets (non-empty) of distributions monad in Met, with Hausdorff– Kantorovich lifting Quantitative equational theory of convex semilattices

- $\Sigma = \oplus$ and $+_p$ for all $p \in (0, 1)$
- quantitative inferences Q =
- axioms of convex semilattices, with t = t' becoming $\emptyset \vdash t =_0 t'$
 - $\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 \oplus x_2 =_{\max(\epsilon_1, \epsilon_2)} y_1 \oplus y_2$ $\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 +_p x_2 =_{p \cdot \epsilon_1 + (1-p) \cdot \epsilon_2} y_1 +_p y_2$

[Mio, V. 2020]

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

 $\begin{array}{c} \text{Monad} \left(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu} \right) \\ \text{in Met} \end{array} \Leftrightarrow$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Convex sets (non-empty) of distributions monad in Met, with Hausdorff-Kantorovich lifting Quantitative equational theory of convex semilattices

- $\Sigma = \oplus$ and $+_p$ for all $p \in (0, 1)$
- quantitative inferences Q =
- axioms of convex semilattices, with t = t' becoming $\emptyset \vdash t =_0 t'$
 - { $x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2$ } $\vdash x_1 \oplus x_2 =_{\max(\epsilon_1, \epsilon_2)} y_1 \oplus y_2$ • { $x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2$ } $\vdash x_1 +_p x_2 =_{p \cdot \epsilon_1 + (1-p) \cdot \epsilon_2} y_1 +_p y_2$

RECAP: ADDING TERMINATION, IN SETS

 $\begin{array}{ccc} \operatorname{Monad} (\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu}) & \longleftrightarrow & \operatorname{Equational Theory} (\Sigma, E) \\ & \text{ in Met} & & \text{ for } \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$

 \Leftrightarrow

Convex sets (possibly empty) of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

 \perp -closed convex sets (possibly empty) of subdistributions monad \mathcal{C}^{\perp}

 $\Leftrightarrow \begin{array}{l} \mbox{Equational theory of convex semilattices} \\ \mbox{with bottom} \quad x \oplus \star = x \end{array}$

LIFTING TO MET

Convex sets (possibly empty) of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

Negative results in Met:

 The quantitative equational theory of convex semilattices with bottom and black-hole is trivial

 \Leftrightarrow

• The multiplication μ of \mathcal{C}^{\emptyset} is not non-expansive \Rightarrow the same monad cannot be lifted to Met

LIFTING TO MET

Convex sets (possibly empty) of distributions monad C^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

Negative results in Met:

 The quantitative equational theory of convex semilattices with bottom and black-hole is trivial

 \Leftrightarrow

• The multiplication μ of \mathcal{C}^{\emptyset} is not non-expansive \Rightarrow the same monad cannot be lifted to Met

 \perp -closed convex sets (possibly empty) of subdistributions monad \mathcal{C}^{\downarrow}

 $\Leftrightarrow \begin{array}{l} & \text{Equational theory of convex semilattices} \\ & \text{with bottom} \quad x \oplus \star = x \end{array}$

[Mio, Sarkis, V. 2021] 27

LIFTING TO MET

Convex sets (possibly empty) of distributions monad C^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

Negative results in Met:

 The quantitative equational theory of convex semilattices with bottom and black-hole is trivial

 \Leftrightarrow

• The multiplication μ of \mathcal{C}^{\emptyset} is not non-expansive \Rightarrow the same monad cannot be lifted to Met

 \perp -closed convex sets (possibly empty) of subdistributions monad in Met \mathcal{C}^{\downarrow} with *HK*

 $\Leftrightarrow \begin{array}{l} \text{Quantitative equational theory of convex} \\ \text{semilattices with bottom} \quad x \oplus \star = x \end{array}$

RECAP

YES in Met

Convex sets (non-empty) of distributions monad ${\cal C}$

 \Leftrightarrow Equational theory of convex semilattices

Con	÷
(possi	M
of dis	0 in
mc	Z

Convex sets possibly empty) of distributions monad \mathcal{C}^{\emptyset}

 \Leftrightarrow

 \Leftrightarrow

 \perp -closed convex sets (possibly empty) of subdistributions monad \mathcal{C}^{\downarrow} Equational theory of convex semilattices with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

Equational theory of convex semilattices with bottom $x \oplus \star = x$

APPLICATION: BISIMULATION DISTANCES

A sound and complete proof technique for bisimulation distance

 $x \sim_{\epsilon} y$ iff $x =_{\epsilon} y$ in the quantitative equational theory

[Mio, Sarkis, V. 2021]

VARYING THE LIFTINGS

Different ways of lifting a metric *d* to probability distributions $\mathcal{D}(X)$

Kantorovich lifting on probability distributions

$$\mathcal{K}(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \Big(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \Big)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

■ Łukaszyk–Karmowski lifting on probability distributions

$$\mathsf{k}K(d)(\Delta_1, \Delta_2) = \sum_{x \in supp(\Delta_1)} \sum_{y \in supp(\Delta_2)} \Delta_1(x) \cdot \Delta_2(y) \cdot d(x, y)$$
[Castro et al. 2021]

Different ways of lifting a metric *d* to probability distributions $\mathcal{D}(X)$

Kantorovich lifting on probability distributions

$$\mathcal{K}(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \Big(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \Big)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

■ Łukaszyk–Karmowski lifting on probability distributions

$$\mathsf{k} \mathsf{K}(d)(\Delta_1, \Delta_2) = \sum_{x \in \mathsf{supp}(\Delta_1)} \sum_{y \in \mathsf{supp}(\Delta_2)} \Delta_1(x) \cdot \Delta_2(y) \cdot d(x, y)$$
[Castro et al. 2021]

A metric? Presented by a quantitative equational theory ?

ISSUES WITH THE ŁK DISTANCE: METRIC CONSTRAINTS

$$(X, d : X \times X \rightarrow [0, 1]) \text{ is a metric space iff}$$

$$d(x, x) = 0$$

$$d(x, y) = d(y, x)$$

$$d(x, z) \le d(x, y) + d(y, z)$$

$$d(x, y) = 0 \Rightarrow x = y$$

For (X, d) a metric space, $(\mathcal{D}(X), \Bbbk K(d))$ is not a metric space

 $\exists \Delta$ such that $\Bbbk K(d)(\Delta, \Delta) > 0$

ISSUES WITH THE ŁK DISTANCE: METRIC CONSTRAINTS

$$(X, d : X \times X \rightarrow [0, 1]) \text{ is a metric space iff}$$

$$1 \quad d(x, x) = 0$$

$$2 \quad d(x, y) = d(y, x)$$

$$3 \quad d(x, z) \le d(x, y) + d(y, z)$$

$$4 \quad d(x, y) = 0 \Rightarrow x = y$$

For (X, d) a metric space, $(\mathcal{D}(X), \Bbbk K(d))$ is not a metric space

 $\exists \Delta$ such that $\Bbbk K(d)(\Delta, \Delta) > 0$

Solution: generalised metric spaces

(X,d) with d a function d:X imes X o [0,1] (aka "fuzzy relation")

d may satisfy a subset of:

1
$$d(x,x) = 0$$

2 $d(x,y) = d(y,x)$
3 $d(x,z) \le d(x,y) + d(y,z)$
4 $d(x,y) = 0 \Rightarrow x = y$
5 $d(x,z) \le \max\{d(x,y), d(y,z)\}$

Examples:

- Metric spaces := 1 + 2 + 3 + 4
- Ultrametric spaces := 1 + 2 + 3 + 4 + 5
- Pseudo-metric spaces := 1 + 2 + 3
- Diffuse metric spaces := 2 + 3
In the deductive system of quantitative equational theories: operations are required to be nonexpansive wrt the product metric

$$s_1 =_{\varepsilon_1} t_1, ..., s_n =_{\varepsilon_n} t_n \vdash op(s_1, ..., s_n) =_{max\{\varepsilon_1, ..., \varepsilon_n\}} op(t_1, ..., t_n)$$

i.e., in all quantitative algebras (A, Σ^A, d_A) , operations define a nonexpansive map $op^A : (A^n, \mathbf{L}_{\times}(d)) \to (A, d)$, where $\mathbf{L}_{\times}(d)((a_1, ..., a_n), (a'_1, ..., a'_n)) = \max_i \{d(a_i, a'_i)\}$

In $(\mathcal{D}(X), \pounds K(d))$, the operation $+_p$ is not nonexpansive wrt to the product metric, i.e., $\exists \Delta_1, \Delta_2, \Delta'_1, \Delta'_2$ such that $\pounds K(d)(\Delta_1 +_{\frac{1}{2}} \Delta_2, \Delta'_1 +_{\frac{1}{2}} \Delta'_2) > \mathbf{L}_{\times}(\pounds K(d))((\Delta_1, \Delta'_1), (\Delta_2, \Delta'_2))$

In the deductive system of quantitative equational theories: operations are required to be nonexpansive wrt the product metric

$$s_1 =_{\varepsilon_1} t_1, ..., s_n =_{\varepsilon_n} t_n \vdash op(s_1, ..., s_n) =_{max\{\varepsilon_1, ..., \varepsilon_n\}} op(t_1, ..., t_n)$$

i.e., in all quantitative algebras (A, Σ^A, d_A) , operations define a nonexpansive map $op^A : (A^n, \mathbf{L}_{\times}(d)) \to (A, d)$, where $\mathbf{L}_{\times}(d)((a_1, ..., a_n), (a'_1, ..., a'_n)) = \max_i \{d(a_i, a'_i)\}$

In $(\mathcal{D}(X), \pounds K(d))$, the operation $+_p$ is not nonexpansive wrt to the product metric, i.e., $\exists \Delta_1, \Delta_2, \Delta'_1, \Delta'_2$ such that $\pounds K(d)(\Delta_1 +_{\frac{1}{2}} \Delta_2, \Delta'_1 +_{\frac{1}{2}} \Delta'_2) > \mathbf{L}_{\times}(\pounds K(d))((\Delta_1, \Delta'_1), (\Delta_2, \Delta'_2))$

Solution: remove the nonexpansiveness requirement

Extend the framework of quantitative equational theories to include:

- generalised metric spaces
- operations which are not nonexpansive

How?

 separate equality from quantitative equality: equations and quantitative equations coexist, with relationship determined by axioms

x = y different from $x =_0 y$

remove rule of nonexpansiveness, and allow for arbitrary operations

 \Rightarrow a new framework for quantitative equational reasoning, with a sound and complete deductive apparatus [Mio, Sarkis, V. 2022]

A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

Effect: probabilities \(\tau: X \rightarrow \mathcal{D}(X)\)
Equivalence relation R on X such that x R y implies \(\tau(x)\) \(\hat{R}\) \(\tau(y)\) with \(\hat{R}\) a lifting of R to \(\mathcal{D}(X)\) defined as: \(\Delta_1\) \(\hat{R}\) \(\Delta_2\) iff \(\forall A \in X_{/R}, \(\Delta_1(A)) = \(\Delta_2(A)\) \)

Effect: probabilities \(\tau: X \rightarrow \mathcal{D}(X)\)
Equivalence relation R on X such that x R y implies \(\tau(x)\) \(\hat{R} \tau(y)\)
with \(\hat{R} \alpha\) lifting of R to \(\mathcal{D}(X)\) defined as:
\(\Delta_1 \(\hat{R} \Delta_2\) iff \(\forall A \in X_{/R}, \Delta_1(A) = \Delta_2(A)\)

 $(\mathcal{D}(X), CS_p(-, -)) \cong (Terms(X, \Sigma)_{/E}, +_p)$

Effect: probabilities \(\tau: X \rightarrow \mathcal{D}(X)\)
Equivalence relation R on X such that x R y implies \(\tau(x)\) \(\hat{R}\) \(\tau(y)\) with \(\hat{R}\) a lifting of R to \(\mathcal{D}(X)\) defined as: \(\Delta_1\) \(\hat{R}\) \(\Delta_2\) iff \(\forall A \in X_{/R}\), \(\Delta_1(A) = \Delta_2(A)\)

 $(\mathcal{D}(X), CS_p(_,_)) \cong (Terms(X, \Sigma)_{/E}, +_p)$

 $\Delta_1 = \Delta_2 \text{ iff } \emptyset \vdash t_{\Delta_1} = t_{\Delta_2}$ where \vdash is derivability in the theory of convex algebras Effect: probabilities \(\tau: X \rightarrow \mathcal{D}(X)\)
Equivalence relation R on X such that x R y implies \(\tau(x)\) \(\hat{R}\) \(\tau(y)\) with \(\hat{R}\) a lifting of R to \(\mathcal{D}(X)\) defined as: \(\Delta_1\) \(\hat{R}\) \(\Delta_2\) iff \(\forall A \in X_{/R}\), \(\Delta_1(A) = \Delta_2(A)\)

 $(\mathcal{D}(X), CS_p(_,_)) \cong (Terms(X, \Sigma)_{/E}, +_p)$

 $\Delta_1 = \Delta_2 \text{ iff } \emptyset \vdash t_{\Delta_1} = t_{\Delta_2}$ where \vdash is derivability in the theory of convex algebras

 $\Delta_1 \hat{R} \Delta_2 \text{ iff } \emptyset \vdash_R t_{\Delta_1} = t_{\Delta_2}$ where \vdash_R is derivability in the theory of convex algebras+equations induced by R • Effect: nondeterminism+termination $au: X \to \mathcal{P}^{\emptyset}(X)$

Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{P}^{\emptyset}(X)$ defined as:

 $S_1 \; \hat{R} \; S_2 \; \text{iff} \; \forall x' \in S_1 \exists y' \in S_2 \; \text{s.t.} \; x' \; R \; y' \; \text{and} \; \forall y' \in S_2 \exists x' \in S_1 \; \text{s.t.} \; x' \; R \; y'$

 $S_1 \hat{R} S_2 \text{ iff } \emptyset \vdash_R t_{S_1} = t_{S_2}$ where \vdash_R is derivability in the theory of semilattices with bottom+equations induced by R

- Effect: nondeterminism+termination $au: X \to \mathcal{P}^{\emptyset}(X)$
- Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{P}^{\emptyset}(X)$ defined as:

 $S_1 \; \hat{R} \; S_2 \; \text{iff} \; \forall x' \in S_1 \exists y' \in S_2 \; \text{s.t.} \; x' \; R \; y' \; \text{and} \; \forall y' \in S_2 \exists x' \in S_1 \; \text{s.t.} \; x' \; R \; y'$

 $S_1 \hat{R} S_2 \text{ iff } \emptyset \vdash_R t_{S_1} = t_{S_2}$ where \vdash_R is derivability in the theory of semilattices with bottom+equations induced by R

More generally:

- bisimulation: we lift a relation R on X to a relation R̂ on the chosen effect over X
- by the correspondence effect/equational theory, we can reason equationally on \hat{R}

• Effect: probabilities $au : X \to \mathcal{D}(X)$

Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as: $\Delta_1 \hat{R} \Delta_2$ iff $\forall A \in X_{/R}, \Delta_1(A) = \Delta_2(A)$

• Effect: probabilities $au : X \to \mathcal{D}(X)$

Metric *d* on *X* such that $d(x, y) \le \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \le \varepsilon$

with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting K(d)

$$K(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \left(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \right)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

• Effect: probabilities $au : X \to \mathcal{D}(X)$

Equivalence relation R on X such that x R y implies $\tau(x) \hat{R} \tau(y)$ with \hat{R} a lifting of R to $\mathcal{D}(X)$ defined as: $\Delta_1 \hat{R} \Delta_2$ iff $\forall A \in X_{/R}, \Delta_1(A) = \Delta_2(A)$

• Effect: probabilities $au : X \to \mathcal{D}(X)$

Metric *d* on *X* such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$ with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined on the Kenternick lifting K(x)

with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting K(d)

$$K(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \left(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \right)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

How to reason equationally on distances?

• Effect: probabilities $\tau : X \to \mathcal{D}(X)$

• Metric *d* on *X* such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$

with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting K(d)

• Effect: probabilities $\tau : X \to \mathcal{D}(X)$

• Metric *d* on *X* such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$

with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting K(d)

 $(\mathcal{D}(X), \mathsf{CS}_p(_,_), \mathsf{K}(d)) \cong (\mathsf{Terms}(X, \Sigma)_{/Q}, +_p, d_{(\Sigma,Q)})$

• Effect: probabilities $\tau : X \to \mathcal{D}(X)$

• Metric *d* on *X* such that $d(x, y) \leq \varepsilon$ implies $\hat{d}(\tau(x), \tau(y)) \leq \varepsilon$

with \hat{d} is a lifting of d to $\mathcal{D}(X)$ defined as: the Kantorovich lifting K(d)

$$(\mathcal{D}(X), \mathsf{CS}_p(_,_), \mathsf{K}(d)) \cong (\mathsf{Terms}(X, \Sigma)_{/Q}, +_p, d_{(\Sigma,Q)})$$

 $\mathcal{K}(d)(\Delta_1, \Delta_2) \leq \varepsilon \text{ iff } \emptyset \vdash_d t_{\Delta_1} =_{\varepsilon} t_{\Delta_2}$ where \vdash_d is derivability in the quantitative equational theory of convex algebras+quantitative equations induced by d