Comer Schemes, Relation Algebras, and the Flexible Atom Conjecture

Jeremy F. Alm David Andrews Michael Levet*

April 4, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Relation Algebras

An integral relation algebra $\langle A, \land, \lor, \neg, 0, 1, \circ, \check{}, 1' \rangle$ is a Boolean lattice augmented with:

- Relational composition: \circ and identity atom 1'.
- For every $a, b \in A$, $a \circ b = 0 \implies a = 0$ or b = 0.
- Relational converse: .
- The relation algebra satisfies additional equational axioms.

When the relation algebra is understood, we write A.

Representation

• Given an abstract algebraic structure *A*, can we *instantiate* or *represent A* over a (finite) set, with corresponding natural operations on the set?

- Ex: Every finite group is a permutation group.
- Q: Does every finite relation algebra admit a finite representation?
- No: Point algebra.

Theorem (Comer, 1983)

Every finite integral relation algebra with a flexible atom admits a representation over a countable set.

Conjecture (Flexible Atom Conjecture)

Every finite integral relation algebra with a flexible atom admits a representation over a finite set.

Ramsey Schemes

Let U be a set, and let $m \in \mathbb{Z}^+$. An m-color Ramsey scheme is a partition of $U \times U$ into m sets Id, R_1, \ldots, R_{m-1} satisfying the following:

- $R_i^{-1} = R_i$.
- $R_i \circ R_i = R_i^c$.
- For all pairs of distinct $i, j \in [m-1]$, $R_i \circ R_j = Id^c$.

The relations Id, R_1, \ldots, R_{m-1} naturally generate a relation algebra.

Comer's Method

Comer's method (1983) provides an approach to instantiate Ramsey schemes.

- Fix $m \in \mathbb{Z}^+$.
- Want prime $p \equiv 1 \pmod{2m}$ where:

•
$$U = \mathbb{F}_p$$

- Let $X_0 \leq \mathbb{F}_p^{ imes}$ be of order (p-1)/m.
- Fix a primitive element g and write $X_i = g^i X_0 = \{g^{am+i} : a \in \mathbb{Z}^+\}.$
- The cosets satisfy some *nice* conditions.
- Now $R_i = \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : x y \in X_i\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Only need to check $p < m^4 + 5$.

Comer Schemes

- Can we relax the notion of a Ramsey scheme and still obtain representations via Comer's method?
- Fix m∈ Z⁺ and a set U. An m-color Comer scheme is a partition of U × U into m + 1 binary relations Id, R₀,..., R_{m-1}.
- We will be particularly interested in Comer schemes that also satisfy the following: for all distinct $i, j, k \in [m-1]$, $R_i \circ R_j$ contains R_k .

Question

Which integral relation algebras admit representations via Comer schemes?

Definition

Let $\mathcal{A}_n([i, i+j, i+\ell])$ denote the integral relation algebra with n symmetric diversity atoms a_0, \ldots, a_{n-1} and forbidden cycles of the form $\{a_i a_{i+j} a_{i+\ell} : 0 \le i < n\}$, with the indices considered modulo n.

Definition

The relation algebra 34_{65} has four symmetric atoms 1', a, b, c, with a flexible and forbidden cycles bbc, ccb.

Theorem (Alm–Andrews–L., 2023)

The relation algebra 34_{65} admits a finite representation over a set of size 3697.

Proof.

- Abstractly, 34_{65} embeds into $\mathcal{A}_n([i, i, i + n/2])$ for all even $n \ge 6$.
- We obtain (via computer search) an instantiation via Comer's method using p = 3697 and n = 24.

Conjecture (Strong Flexible Atom Conjecture)

Every finite integral relation algebra with a flexible atom is representable over a Comer scheme.

Question

The relation algebra 33_{65} has atoms 1', a, b, c, with a flexible and forbidden cycles ccc, bcc, cbb. Does 33_{65} admit a finite representation? This is the last RA in the family N_{65} with a flexible atom that is not known to admit a finite representation.